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Proteins Involved in Slgnahng Theorem [Denis 1998] PU Learning reduces to agnostic.

Proof by picture.

Goal: Classify proteins that are involved in signaling across J
0, %% o

cellular membranes [ Sair Tran Barabote ‘06, Elkan Noto ’08 ] 0®® o8 Idea: Label unlabeled

samples as negative.

Solve agnostic
learning via ERM.

PU learning has many applications:
1. Proteins involved in signaling [Elkan Noto “08]

Public dataset has poor quality

: : 2. Classity x-rays [Hassanzadeh Kholghi Nguyen Chu ‘08]
Classical Learning Theory Approach X-rays dataset is biased

Collect positive and negative samples and train a classifier 3. Fraud detection [M.S. Yuan Wu '22]

Unlabeled activity dataset is massive and difficult to clean

Issue [Elkan Noto’08]

= “...TCDB is a database containing information about over Positive and Imperfect Unlabeled Learning

4000 proteins that are involved in signaling...”
“If we ask a biologist for proteins that are not involved in
this process, the only answer is “all other proteins”

PIU Learning ~
INPUT: 71 samples x; ~ P, and n samples x; ~ U.
OuTtrurt: a concept h € H such that with high probability

We have a good quality data set with samples of the form (x;,1)
But, we do not have collected data of the form (x;, —1)!

X%E(X) 7 h*(x)) <e.

Q. Can we solve classification problems using only positive data?

Theorem [Natarajan 1987] [Lee M. Zampetakis]
Binary classification with only positive samples can be solved
only for very restricted function classes

Assumption 1 (SMooTHNESS) It holds that x2(U|U) < C.

Technical Vignette.
Scenario A Scenario B Impossible to distinguish

ERM does not work!

Idea [Elkan Noto’08]. Use public protein dataset as a proxy Theorem [Lee M. Zampetakis] If Assumption 1 holds, then we can

. , B ,
Issues. Some proteins in this data may impact signaling solve PIU learning using n = Q(VC(H)/&~) samples.

Simplifying assumption

PU Learning — Prior Work

INPUT: 71 samples x; ~ P, and n samples x; ~ U.
OuTPUT: a concept h € H such that with high probability

P (h(x) # 1" (x)) < ¢.

x~U Decouples false-positives and false-negatives.

Issue: Denis’s reduction does not apply!

Pessimistic ERM does not work without

~

supp(U) = supp(U)!

Idea: Find h; = Pessimistic ERM(P, U),
hy = Pessimistic ERM(P, U N hy),
hs = Pessimistic ERM(P,U Nhy Nhy),...

return ﬂ} / 1

Assumption 2 (NON-TRIVIAL FRACTION OF PosiTives) For some
known a« > 0, P,y (h*(x) =1) > a.

V. (.vA-- Concept Class k(e)
( l 1 PTFs of degree k O(k? /&%) [Kane "11]
AAAAA N J o Intersections of k halfspaces O(logk/e?) [KOS '08]
General convex sets O(d'/? /€2) [Ball 1993]

Theorem [Lee M. Zampetakis]
If Assumptions 1, 2, and 3 hold, then we can efficiently solve

PIU learning in using # = poly(d(¢)) samples.

Method for efficient agnostic learning: £;-regression.

[Kalai Klivans Mansour Servedio '08]

min X;)|, s.t., minyp(x;), 1 > (1 —¢)n.
in Klp(3) L min{p(x), 1} = (1—¢)

(Constrained /¢;-regression)

Can be solved using linear program.
Challenging to show that p is: (1) feasible, and (2) approximate optimizer

of Pessimistic ERM.

Applications to Learning Theory *+ Statistics

1. Learning from despite corruptions in data
2. Learning with smooth positive examples - bypasses impossibility!

3. Truncated statistics: (a) detecting truncation and (b) parameter
estimation with truncation - leads to fastest algorithms




