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Main Results
• Input: Elements of an underlying frequency 

vector 𝑥 ∈ ℤ!, which arrive sequentially one at a 
time (worst-case, fixed in advance).

• Output: At the end of the stream, A outputs an 
approximation of a given function of the stream.

• Goal: A should use space sublinear in the length 
𝑚 of the input stream and universe size 𝑛.

Standard Streaming Model Adversarially Robust Streaming
• Input: Elements of a stream, which arrive 

sequentially and adversarially.
• Output: At each time 𝑡, A receives an update 𝑢", 

updates its internal state, and returns a current 
estimate 𝑟" , which is recorded by the adversary.

 “Future updates may depend on previous estimates”

Overview of our Approach

Linear Sketches
• A linear sketch is an algorithm that

1. Samples a sketching matrix 𝐴 ∈ ℝ#×!	
and maintains 𝐴𝑥 throughout the stream 
(typically 𝑟 ≪ 𝑛).

2. Returns 𝑓 𝐴𝑥  for some estimator 𝑓.
• Lower bounds are often proven by selecting a 

pair of hard distributions 𝔇% and 𝔇& which 
exhibit a ”gap” for the problem of interest.

• Then, show that 𝑑'( 𝐴𝑥, 𝐴𝑦  is small when 𝐴 
has 𝑟 rows.

• For many problems, (e.g. operator norm, norm 
estimation, etc), the hard distributions 𝔇% and 𝔇& 
are chosen to be Gaussians (or somewhat “near” 
Gaussian).

• Example:  For the problem of estimating 𝑥 &
&
, 

pick 𝔇% = 	𝒩 0, 𝐼!  and 𝔇& = 	𝒩 0, (1 + 𝜖)𝐼! . 
WLOG, 𝐴 has orthonormal rows. Then, 𝐴𝑥 ∼ 
𝒩 0, 𝐼# , 𝐴𝑦 ∼ 𝒩 0, 1 + 𝜖 𝐼# , so 𝐴 must have 
𝑟 = Ω %

)! log 1/𝛿)  rows.
• Unfortunately, none of these lower bounds 

translate to the streaming model!
• Question: Is it possible to lift linear sketch lower 

bounds for continuous inputs to obtain linear 
sketch lower bounds for discrete inputs?

Dimension Lower Bounds

Adaptive Attack for Linear Sketches

• Linear sketches for 𝐹* estimation (𝑝 > 0) are “not 
robust” to adversarial attacks, i.e. require Ω(𝑛) 
dimension [HW13]. 

• High-level intuition: suppose the adversary 
knows the sketch matrix 𝐴: then, a hard 
distribution is to query 𝑥 ∈ ker(𝐴) or 𝑥 = 0!, 
each with probability ½. 

• Thus, the adversary will aim to learn the rowspace 
𝑅(𝐴).

• [HW13] gives an adaptive attack which proceeds 
as follows: initialize 𝑉% = ∅.

1. Correlation finding: Find vectors weakly 
correlated with 𝐴 orthogonal to 𝑉+,%.

2. Boosting: Use these vectors to find 
strongly correlated vector 𝑣.

3. Progress: Set 𝑉+ = span(𝑉+,%, 𝑣).
• Drawback: All queries are drawn from 

(continuous) Gaussian distributions with 
appropriate covariance, and the analysis heavily 
relies on rotational invariance. This lower bound 
does not directly translate to the adversarial 
streaming setting! 

• Question: Does there exist a sublinear space 
adversarially robust F-	estimation linear sketch in 
a finite precision stream?

We give a technique for lifting linear sketch lower 
bounds for continuous inputs to achieve linear 
sketch lower bounds for discrete inputs!
• Theorem: Any adversarially robust streaming 

algorithm which uses a (finite-precision) linear 
sketch and 𝐵-approximates the 𝐹* moment in a 
turnstile stream must use 𝑟 ≥ 𝑛	 − 𝑂 log𝐵𝑛  
rows.

• We also lift linear sketch lower bounds for 
streaming problems such as operator norm, 
eigenvalue estimation, compressed sensing, etc.

Essentially, we want to “simulate” continuous 
Gaussian queries using discrete Gaussian queries.
• Let 𝒟.,0 denote the discrete Gaussian distribution 

on support 𝐿 and with covariance matrix 𝑆'𝑆.
• Let 𝑥 ∼ 𝒟ℤ" ,	0	,	𝑦 ∼ 𝒟3ℤ" ,	03# ,	𝑔 ∼ 𝑁 0, 𝑆'𝑆

• As in continuous case, we want to show  
𝐝𝐓𝐕 𝐀𝐱, 𝐲  is small on support 𝐀ℤ𝐧.

• Lemma [AR16]: this is true, under a certain 
condition for the orthogonal lattice to 𝐴!

1. We design a pre-processing for the sketching 
matrix 𝐴, which can be applied without loss of 
generality, and satisfies the above condition.

2. After applying the pre-processing on sketching 
matrix 𝐴, we show that 𝐴𝑥 + 𝜂 and 𝐴𝑔 are close 
in distribution, where 𝜂 is a uniform noise in the 
fundamental parallelepiped of the lattice induced 
by 𝐴.

3. WLOG, assume algorithm sees 𝐴𝑥 + 𝜂, since 
algorithm can always round to recover 𝐴𝑥.


