A Strong Separation for Adversarially Robust ℓ_0 Estimation for Linear Sketches

Elena Gribelyuk¹

Honghao Lin²

David P. Woodruff²

Huacheng Yu¹

Samson Zhou³

Princeton Univeristy¹

Carnegie Mellon University²

Texas A & M University³

Adversarially Robust Streaming

- Input: Elements of an underlying data set *S*, which arrives sequentially and *adversarially*
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S
- Adversarially Robust: "Future queries may depend on previous queries"
- Motivation: Database queries, adversarial ML

142

3

1421

Distinct Elements

- Given a set S of m elements from [n], let f_i be the frequency of element i. (How often it appears)
- Let F_0 be the frequency moment of the vector:

$$F_0 = |\{i : f_i \neq 0\}|$$

- Goal: Given a set S of m elements from [n] and an accuracy parameter ε , output a $(1 + \varepsilon)$ -approximation to F_0
- Motivation: Traffic monitoring

Linear Sketch

- Algorithm maintains Ax for a matrix A throughout the stream
 - In the streaming model, the entries of A should be poly(n) bounded integers
- All insertion-deletion streaming algorithms on a sufficiently long stream might as well be linear sketches [LNW14, AHLW16]

Our Contribution

• There is a constant $\varepsilon = \Omega(1)$ such that any linear sketch that produces $(1+\varepsilon)$ -approximation to ℓ_0 on an adversarial insertion-deletion stream using $r < n^c$ rows, for a constant c > 0, can be broken in $\tilde{O}(r^8)$ queries.

Attack Outline

- Adversary wants to gradually learn the sketching matrix
- Strategy:
 - 1. Iteratively identify the significant coordinates and set them to zero in all future queries
 - 2. After we have learned all such coordinates, the query algorithm must rely on the other coordinates, for which the sketch Ax only has "small" information

Pre-processing the Sketch Matrix

- The algorithm has access to linear sketch Ax
- Pre-process the matrix A into a larger matrix A' that separates the significant coordinates: add row e_i for each significant i
- WLOG, we can assume the algorithm actually use A' instead of A. Only gives the algorithm "more" information

$$\begin{bmatrix}
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 999 & 1 & 1 & 0 & 1 & 1
\end{bmatrix} \longrightarrow
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$A'$$

- Iterative process: whenever there is a significant \emph{i} , zero column \emph{i} and add a row $\emph{e}_\emph{i}$.
- Resulting matrix A' is a combination of a sparse part S and a dense part D

$$A' = \begin{bmatrix} S \\ D \end{bmatrix}$$

- The row of *S* is one-sparse
- The **D** has no significant columns
- The columns of S and D are disjoint.

We Show only $O(rs \log n)$ rows added to A!

- How to quantify significant coordinates?
- *i* is significant if there exists:

Make a number of adaptive queires

• $y \in \mathbb{R}^r$ such that $(FRAC(y^TA)_i)^2 \ge \frac{1}{s} \sum_i (FRAC(y^TA)_i)^2$

Interactive Fingerprinting Code Problem

to learn S.

• A set $S \subset [n]$ with $|S| = \ell$

• Query $q^t \in \{0, 1\}^n$

- Observe q_S^t , output a^t • If $q_S^t = 1^\ell$, $a^t = 1$
- If $q_S^t = 1^t$, $a^t = 1$ • If $q_S^t = 0^\ell$, $a^t = 0$

There exists an interactive fingerprinting code with queries $\tilde{O}(|S|^2)$ [SU15]

Overall Attack

- 1. Pre-process the matrix A into a matrix A' that is a combination of a sparse part S and a dense part D
- 2. Attack sparse part *S* using fingerprinting code
- 3. Argue dense part *D* doesn't help

Attacking the Dense Part

- Design a family of distributions \mathcal{D} over [-R, ..., -1,0,1, ..., R] with $R = \text{poly}(r \ s \log n)$ such that:
 - For $D_p \in \mathcal{D}$ with $p \in [a,b]$, we have $\Pr_{X \sim D_p}[X=0] = 1-p$
 - For any $p, p' \in [a, b]$, the total variation distance between Dx_p and $Dx_{p'}$ is small, i.e., $\frac{1}{\text{poly}(n)}$

$$Ax = \begin{bmatrix} S \\ D \end{bmatrix} x = \begin{bmatrix} Sx_S \\ Dx_D \end{bmatrix}$$

• Dx_D doesn't help to get the value of p, the only help part is Sx_S .