Optimal Communication Complexity of Chained Index

Index Problem

Alice has a string $X \in \{0,1\}^n$ and Bob holds an index $i \in [n]$. Alice sends a message M to Bob who wants to know what X_i is.

Any protocol π for INDEX needs $\Omega(n)$ bits [1]. **Our Problem - Chained Index**

Many instances with **same answer** are "chained" together [2].

There are k + 1 players, and player i (Alice i) and player i + 1 (Bob i) are given instance i of INDEX.

Messages are sent in order of M_1, M_2, \ldots, M_k . What is the total length of messages on the board?

Janani Sundaresan

University of Waterloo

Our Result

Communication Complexity of Chained Index is $\Omega(n - k \log n)$. Our lower bound is tight, barring corner case when $k = \Omega(n/\log n)$.

Prior Work

Work	Lower bound
[2]	$\Omega(n/k^2)$
[3]	One message with $\Omega(n/k^2)$
[4]	$\Omega(n/k + \sqrt{n})$

Applications in streaming lower bounds for maximum independent sets [2], streaming submodular maximization [3], and interval selection.

Protocols for INDEX

Assume X, i chosen uniformly at random. How to succeed with probability $1/2 + \Omega(1/\sqrt{n})?$

One Bit Protocol

Gain $\Omega(1/\sqrt{n})$ advantage over random guessing by sending majority bit.

Bob already knows something about the answer from previous messages. Bias from 1/2 is θ .

An O(n/k) protocol?

• Each player sends $O(n/k^2)$ bits, forming majority of blocks of size k^2 .

• Final player chooses majority of all the answers. For correctness of answers:

> Mean : $k/2 + \Omega(1)$ Standard Deviation : $\Omega(\sqrt{k})$. Need $\delta = \Omega(1/\sqrt{k})!$

Standard Hybrid Argument

Takeaway

Some other way to measure progress instead of advantage : Keep track of Information/Entropy of answer directly.

Biased Index Problem

[1]	I. k
[2]	G.
[3]	M. Zen
[4]	M. TR
[5]	S. A

Results for Biased Index

To find the answer with high probability, entropy should be low.

Initial Entropy		
Index	$H_2(1/2) = 1$	
Biased Index	$H_2(1/2+\theta) < 1$	

Entropy after Message of Length *s*

Index	1 - O(s/n)
sed Index	$H_2(1/2 + \theta) - O((s + \log n)/n)$

Another Sampling Process [5]

• Restrict to X with exactly n/2 ones. (Loss of $\log n$ in entropy.)

• Sample set $T \subset [n]$ of size $n/(1+2\theta)$ uniformly. • Sample n/2 positions from T, setting them to 1. Rest of the positions are set to 0.

• Choose i uniformly random from T.

Conditioned on set T, string X

and index *i* are independent!

$$\theta = 1/4$$

$$1 0 1 1 0 1 1 1 0 0 0 0$$

$$2n/3 n/3$$

n/2 ones in 2n/3 slots

One Application

 $\Omega(n^2/\alpha^5 - \log n)$ lower bound for α approximation of maximum independent sets in vertex arrival streams.

References

Kremer, N. Nisan, D. Ron, STOC '95, 596-605.

- Cormode, J. Dark, C. Konrad, ICALP '19, 45:1-45:14.
- Feldman, A. Norouzi-Fard, O. Svensson, R.
- nklusen, STOC '20, 1363-1374
- Huang, X. Mao, G. Yang, J. Zhang, ECCC, R24-067.
- Assadi, S. Khanna, Y. Li, STOC '16, 698-711.