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Hospital A: Labeled data 
(treatment outcomes)

Hospital B: Only unlabeled data 
(patient medical records)

Goal: Decide treatments for B using A

Out of distribution generalization for classification: 
Pr
𝒟′￼

[h(x) ≠ f*(x)] ≤ Pr
𝒟

[h(x) ≠ f*(x)] + disc𝒞(𝒟, 𝒟′￼)

Discrepancy distance between distributions ,  
with respect to class of boolean functions : 

𝒟, 𝒟′￼

𝒞

disc𝒞(𝒟, 𝒟′￼) = maxf1, f2∈𝒞 Pr
𝒟

[ f1(x) ≠ f2(x)] − Pr
𝒟′￼

[ f1(x) ≠ f2(x)]

Attempt #1: Estimate Statistical Distance 
between Training and Test distributions

Learning in the presence of distribution shift Our Approach: Testable Learning with Distribution Shift

Broader Context: Testable Learning

Case I: Low bias 
( )|τ* | ≤ 1/ϵ1/2

Case II: High bias ( )τ* > 1/ϵ1/2
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! Critical Setting: Guarantees Needed

Information-theoretic 
impossibility

e.g. uniformity testing in 
high dimensions requires 

exponential number of 
samples

Attempt #2: Estimate the Discrepancy 
(Domain Adaptation)

[BBCP’06] [BCKPW’08] [MMR’09]

Small discrepancy between training and test distributions  
 low test error 

(assuming labels always generated by unknown )
⇒

f* ∈ 𝒞

Sample complexity of estimating the discrepancy 
is bounded by the VC-dimension of 𝒞

Testing if the discrepancy is small is NP-hard, 
even when  is the class of linear classifiers𝒞

[CKKSV’24] 
[BGS’18]

Goal: Certify at least one of the following 
1. The test distribution is different from the training (detect distribution shift) 
2. The error of the output classifier  on the test distribution is lowh

Input

(x ∼ 𝒟, f*(x))
(x ∼ 𝒟′￼)

𝒜
Output

Either (REJECT, ) 
or (ACCEPT, )

⊥
h

• Soundness: Upon acceptance  (w.h.p.) 

• Completeness: If , then accept (w.h.p.)

Pr
x∼𝒟′￼

[h(x) ≠ f*(x)] ≤ ϵ

𝒟 = 𝒟′￼

Certify low test error 
with no assumptions 
on test marginal

Results from classical learning theory for 
most concept classes can be enhanced 
with efficient testers for TDS learning

Concept Class Training Marginal TDS Runtime PAC Runtime

Halfspaces Standard d-dim 
Gaussian

Intersections of  
k Halfspaces

Standard d-dim 
Gaussian

Degree-2 PTFs Standard Gaussian 
or Uniform

Circuits of size s, 
depth t

Uniform on d-dim 
hypercube

dΘ̃(log 1/ϵ)

dÕ(log 1/ϵ)(k /ϵ)O(k3) poly(d)(k /ϵ)O(k2)

poly(d,1/ϵ)

dÕ(1/ϵ9) poly(d,1/ϵ)

dO(log(s))O(t)log(1/ϵ) dO(log(s))t−1log(1/ϵ)

[KSV’24a,b] [CKKSV’24] ++

Goal: Get rid of strong assumptions 
Instead of assumptions: Provide certifiable guarantees when 
1. Direct validation of guarantees 
2. Direct verification of assumptions

Are intractable  
or impossible

[Rubinfeld & Vasilyan ’23]

Testable Agnostic Learning [RV’23]: No distribution shift, but unknown error 
benchmark (“optimum error”). Assumption to be removed: marginal is well-behaved 
Testable Noise Assumptions [GKSV’25]: Again, no distribution shift. Assumption 
to be removed: The label noise is structured

Suppose:   f*(x) = sign(w* ⋅ x − τ*) , w* ∈ 𝕊d−1, τ* ∈ ℝ
Simpler result: There is an -TDS learner with runtime ϵ poly(d) ⋅ 2O(1/ϵ)

Parameter Recovery

Lemma:  𝔼x∼𝒩[ f*(x) x] = exp(−τ*2/2)

2π
w*

[DKS’18]

  
 
ŵ : ∥ŵ − w*∥2 ≤ O(ϵ/d)

̂τ : ∥ ̂τ − τ*∥2 ≤ O(ϵ/d)Find:

using    samplespoly(d /ϵ) ⋅ 2O(τ*2)

Concern:  disagree often under f*, ̂f 𝒟′￼

Check the following condition:

ℙx∼𝒟′￼[∃w′￼, τ′￼: ]≤ O(ϵ)
∥ŵ − w′￼∥ ≤ O(ϵ/d)
∥ ̂τ − τ′￼∥ ≤ O(ϵ/d)

̂f(x) ≠ f′￼(x)

No information about w*
Concern:  often large under w* ⋅ x 𝒟′￼

Concentration Certificates
ℙx∼𝒟′￼[w* ⋅ x > τ*] ≤ ℙx∼𝒟′￼[w* ⋅ x > ϵ−1/2]

≤ ϵ 𝔼x∼𝒟′￼[(w* ⋅ x)2]
Check: 𝔼𝒟′￼[xixj] ≈ 𝔼𝒩[xixj] , ∀i, j
So: 𝔼x∼𝒟′￼[(w* ⋅ x)2] ≈ 𝔼x∼𝒩[(w* ⋅ x)2] = 1

For tight results: Check degree log(1/ϵ)

Universal TDS Learners
Handle Benign Shifts

Accept whenever  such that: 
1.  

2.

𝒟′￼

𝔼x∼𝒟′￼[(v ⋅ x)4] ≤ C , ∀v ∈ 𝕊d−1

ℙx∼𝒟′￼[ |v ⋅ x | ≤ r] ≤ Cr , ∀v ∈ 𝕊d−1

Instead of moment matching:

Check: sup
v∈𝕊d−1

𝔼𝒟′￼[(v ⋅ x)2] ≤ C

using eigenvalue decomposition

For improved runtime: Certify 
subgaussianity via SoS [DHPT’24]

ϵ𝒟 𝒟′￼

Tolerant TDS Learners [GSSV’24]

Accept whenever dTV(𝒟, 𝒟′￼) ≤ ϵ
Handle Moderate Amounts of Shift

While: sup
v∈𝕊d−1

𝔼𝒟′￼[(v ⋅ x)2] > 10

Find  s.t.  

 is at least 

r ℙx∼𝒟′￼[(vmax ⋅ x)2 > r]
2 ℙx∼𝒩[(vmax ⋅ x)2 > r]

Condition  on 𝒟′￼ (vmax ⋅ x)2 ≤ r

Check: Mass of rejected region O(ϵ)


