Dimension-free Private Mean Estimation for Anisotropic Gaussians

Yuval Dagan, Michael I. Jordan, Xuelin Yang, Lydia Zakynthinou, Nikita Zhivotovskiy

Differential Privacy: Algorithm $A: \mathcal{X}^n \to \mathcal{W}$ is (ε, δ) -differentially private if, for any two data sets X, X' that differ in exactly one data point, for any measurable subset, $W \in \mathcal{W}$,

$$\Pr_A[A(X) \in W] \le e^{\varepsilon} \Pr_A[A(X') \in W] + \delta$$

Challenge: Differentially private inference often suffers from a curse of dimensionality: $n = \Omega(d)$ for number of sample n and data dimension d.

Our focus: High-dimensional mean estimation:

Given dataset $x \in \mathbb{R}^{n \times d}$ sampled from distribution \mathcal{P} with mean μ , find $\hat{\mu}$: $\|\hat{\mu} - \mu\|_2 \leq$ α . This is a fundamental task and a subroutine in many private algorithms.

Dependence on d: Sometimes it is unavoidable:

For isotropic Gaussians $\mathcal{N}(\mu, \sigma^2 \mathbb{I}_{d \times d})$,

samples are necessary and sufficient for (ε, δ) -DP mean estimation [KLSU'19, BGSUZ'21].

But real-world data are often anisotropic (far from isotropic). The signal can be concentrated in few directions – the rest are noise.

Non-privately, the sample complexity scales with the effective rank:

$$n \gtrsim \frac{\operatorname{Tr}(\Sigma)}{\alpha^2} = \frac{\sum_{i=1}^d \sigma_i^2}{\alpha^2} \Longrightarrow \|\mu_X - \mu\|_2 \le \alpha$$

Can we achieve similar dimension-independent sample complexity under privacy?

For pure DP, it's impossible via packing [HT10]. For (ε, δ) -DP, we present:

- An (ε, δ) -DP (sub)Gaussian mean estimator with **dimension-free** sample complexity, for known Σ
- The error achieved by this estimator is **optimal**.
- An (ε, δ) -DP (sub)Gaussian mean estimator with milder dependence on the dimension for unknown Σ .

Prior Approaches

- 1. Learning the mean in Mahalanobis norm
- ✓ Implies bound on error in Euclidean norm: $\|\hat{\mu} - \mu\|_{\Sigma} \leq \alpha \Rightarrow \|\hat{\mu} - \mu\|_{2} \leq \alpha \sigma_{1}$.
- \checkmark Can be done with unknown Σ with the same sample size [BGSUZ'21].
- \times Requires $n = \Omega(d)$.
- 2. "Folklore": clip + spherical noise [KV'18] Find private coarse mean $\tilde{\mu}$ to clip data Add noise $\mathcal{N}(0, \operatorname{Tr}(\Sigma)\mathbb{I}_{d\times d}/\varepsilon^2 n^2)$

- **×** Spherical noise incurs $\sqrt{d \operatorname{Tr}(\Sigma)}/\varepsilon n$ error.
- 3. [PLAN'23]: clip + rescaled noise Find private coarse mean $\tilde{\mu}$ to clip data Add noise $\mathcal{N}(0, \operatorname{Tr}(\Sigma^{1/2})\Sigma^{1/2}/\varepsilon^2n^2)$

$$n \gtrsim \frac{\mathrm{Tr}(\Sigma)}{\alpha^2} + \frac{\mathrm{Tr}\left(\Sigma^{1/2}\right)\sqrt{\log 1/\delta}}{\alpha\varepsilon} + \frac{\sqrt{d}}{\varepsilon}$$

- ✓ Allows for more error in directions of small variance.
- \times Coarse estimation requires \sqrt{d}/ε

All prior approaches require $n \ge \sqrt{d}$. Ours do not!

An optimal estimator under known Σ

There exists an (ε, δ) -DP estimator which given n samples from $\mathcal{N}(\mu, \Sigma)$ with known Σ , returns $\hat{\mu}$ s.t. $\|\hat{\mu} - \mu\|_2 \leq \alpha$ if

$$n \gtrsim \frac{\mathrm{Tr}(\Sigma)}{\alpha^2} + \frac{\mathrm{Tr}(\Sigma^{1/2})\sqrt{\log 1/\delta}}{\alpha\varepsilon} + \frac{\log 1/\delta}{\varepsilon}$$

Idea: replace coarse estimation with a pre-processing check which only uses $\frac{\log 1/\delta}{\varepsilon}$ samples and ensures

$$\forall \ell, j : \left\| \Sigma^{-1/4} \left(x_{\ell} - x_{j} \right) \right\|_{2}^{2} \leq \operatorname{Tr}(\Sigma^{1/2})$$

using the FriendlyCore filter of [TCKMS'21] with this predicate.

- 1. Filter data by the predicate and abort if too few remain.
- 2. Release empirical mean of modified dataset with Gaussian

noise
$$\mathcal{N}\left(0, \frac{\log(1/\delta)\mathrm{Tr}(\Sigma^{1/2})}{\varepsilon^2 n^2}\right) \Sigma^{1/4}$$

Optimality via fingerprinting [BUV14]: Any (ε, δ) -DP algorithm for the Gaussian mean with accuracy α requires $n = \Omega\left(\frac{\sum_{i \in [d]} o_i}{2}\right)$

Must \exists bucket of coordinates $m \in [\log d]$ with same variance $\sigma_{(m)}$ of size $d_{(m)} \propto \sum \sigma_i / \sigma_{(m)}$ \Rightarrow bucket m is isotropic Gaussian

 \Rightarrow need $d_{(m)}\sigma_{(m)}/\alpha\varepsilon$ samples to learn its mean [KLSU2019]

A $d^{1/4}$ ependence for unknown Σ

- Privately learning Σ in spectral norm requires $n \gtrsim d^{1.5}$ [KMS'22].
- Techniques from [BGSUZ'21] require $n \gtrsim d$. Consider diagonal covariance.
- 1. Approach 1: Privately learn all σ_i , then run knowncovariance algorithm \Rightarrow Requires $n \gtrsim \sqrt{d}/\varepsilon$.
- 2. Approach 2: Only privately learn $Tr(\Sigma)$ and add spherical Gaussian noise ⇒ Error scales with $\sqrt{d\mathrm{Tr}(\Sigma)/\varepsilon n}$.

Idea: learn as many large σ_i as the sample size allows, add spherical noise to the remaining coordinates. We learn the top $k \approx \varepsilon^2 n^2$ variances. Error of remaining coordinates is $\frac{\sqrt{d}}{\sqrt{k}}$ times larger than the optimal.

There exists an (ε, δ) -DP estimator which given n samples from $\mathcal{N}(\mu, \Sigma)$ with unknown diagonal Σ , returns $\hat{\mu}$ s.t. $\|\hat{\mu} - \mu\|_2 \le \alpha$ if

$$n \gtrsim \frac{\operatorname{Tr}(\Sigma)}{\alpha^2} + \frac{\operatorname{Tr}(\Sigma^{1/2})\sqrt{\log 1/\delta}}{\alpha\varepsilon} + \frac{d^{1/4}\sqrt{\operatorname{Tr}(\Sigma^{1/2})}\log 1/\delta}{\sqrt{\alpha}\varepsilon}$$

Optimal error under unknown covariance? Our algorithm matches the known-covariance error for special cases: e.g. exponentially decaying variances.

Aumüller, Lebeda, Nelson, Pagh (2023). PLAN:Variance-aware Private Mean

Tsfadia Cohen Kaplan Mansour Stemmer (2021). FriendlyCore: Practical Differentially Private Aggregation

Brown, Gaboardi, Smith, Ullman, Zakynthinou (2021). Covariance-aware Private Mean Estimation without Private Covariance Estimation.

Partially funded by the European Union (ERC-2022-SYG-OCEAN-101071601).

