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Background

Given dataset X ⊆ Rd, the Euclidean Max-Cut of X asks to compute:

max
S⊂X

∑
x∈S

∑
y∈X/S

‖x − y‖2

Massively Parallel Computation: Points distributed across m machines each with O(dnα) words
of memory for α > 1. Each Machine can send / receive O(dnα) words each round.

Dynamic Geometric Streams [Ind04]: Dataset X ⊂ [∆]d is presented as an arbitrary sequence

of insertions & deletions of points x ∈ X .

Prior work [CJK23] gives a dynamic streaming algorithm which finds a (1 + ε) approximation in

poly(d log(∆)/ε) space, but cannot determine which points lie in S. The prior best known

streaming algorithm that provides oracle-access to S requires space exponential in 1/ε .

Parallel and Subsampled GreedyAssignment

Consider X = {x1, . . . , xn} of n points in Euclidean space. We assign points in a greedy fashion

similar to [MS08]:

Each point xi generates a timeline Ai ∈ {0, 1}te: at each time t = 1, . . . , te, it “activates” by
sampling Ai,t ∼ Ber(wi,t) with probability proportional to it’s weight and 1/t.

Each xi samples a mask Ki ∈ {0, 1}te: at each time t, xi is “kept” by sampling Ki,t ∼ Ber(γt),
where γt is 1 at t ≤ t0 and γ/t for t > t0.
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Fig 1. Assignment timeline.

Greedy Cut: We encode a partial cut at each time step t ∈ [te] as a [n] × {0, 1} matrix zt with

entries in [0, 1].
Each point assigns itself to inside/outside the cut the moment it is first activated.

Points activated by time t0 try all cut assignments.

Points activated after t0 are assigned greedily.

Greedy assignment: If Ai,t = 1 for t > t0, we assign xi to the cut S if

n∑
j=1

d(xi, xj)

 1
t − 1

t−1∑
`=1

Aj,` · Kj,`

wj,` · γ`

 zt−1
j,0 ≥

n∑
j=1

d(xi, xj)

 1
t − 1

t−1∑
`=1

Aj,` · Kj,`

wj,` · γ`

 zt−1
j,1

and otherwise assign it outside.

Theorem 1: [MPC] There is a O(1)-round fully-scalable MPC algo-

rithm which outputs a (1 + ε)-approximate Euclidean max-cut using

O(nd) + n · poly(log n/ε) total space.

MPC Algorithm:

1. Use shared randomness to compute and share cascaded `1(`2)-sketches.

2. Generate Ai and Ki for each xi using the sketched weight wi.

3. If ∃t ≤ te where Ai,t · Ki,t = 1, communicate (xi, wi, t) to all other machines.

4. Estimate the best initial assignment of the points activated by t0 (using a few additional

samples)

5. Assign each xi by maximizing the weighted contribution to the activated and kept points.

Analysis

Want to prove:

E
[
f (zte) − f (z∗)

]
≤ ε

n∑
i=1

n∑
j=1

d(xi, xj).

Proof Sketch: Like [MS08], define a “fictitious cut” solely for analysis

Fictitious Cut: Sequence of cut matrices ẑ0, . . . ẑte.

ẑ0 is set to the assignment corresponding to the optimal max-cut z∗.

When xi is first activated, set ẑt
i = zt

i .

When xi is not activated, update it to:

ẑt
i = 1

1 − wt
i

(
t − 1

t
· ẑt−1

i + 1
t

· gt
i − wt

i · gt
i

)
where gt

i is either (1, 0) or (0, 1), based on the greedy decision had xi been activated at

time t

Rewrite in terms of fictitious cut

E
[
f (zte) − f (z∗)

]
≤ E

[
f (ẑte) − f (ẑ0)

]
=

te∑
t=t0+1

E
[
f (ẑt) − f (ẑt−1)

]
Further decompose the change in cut value per time step into sum of terms representing the

change in cut value when reassigning a point and the change for simultaneously updating points.

Fictitious cut defined so as to smooth the error between the true and estimated change when

(re)assigning a point, forming a martingale which decays by a factor of t−1
t each time step. Greedy

decision always maximizes the estimated change.

This allows us to bound the expression by:

E
[
f (zte) − f (z∗)

]
≤

(
log(te)√

γ
+

√
γ

t0
+ 1

t0

) n∑
i=1

n∑
j=1

d(xi, xj).

For a 1 + ε approximation, this requires

γ ≥ log(te)/ε2 and t0 ≥ √
γ/ε2 and te ≥ n/ε

Total Space: Roughly O(t0 + log(te)) points stored in expectation, gives space complexity:

poly(d log(n)/ε)

Theorem 2: [Dynamic Streams] There is a dynamic streaming algo-

rithm using poly(d log ∆/ε) space which provides oracle access to a

(1 + ε)-approximate Euclidean max-cut.

Challenge: Cannot compute weight wi and timelines Ai until end of the stream.

Solution: Geometric sampling sketches [CJK23] can sample xi ∼ X with probability

proportional to wi. Use these for the simultaneously “activated” and “kept” points.

During Stream

Sample one mask K ∈ {0, 1}te.

Draw poly(d log(δ)/ε2) geometric sampling sketches from the stream.

After Stream

If Kt = 0, no point is activated and kept at that time. If Kt = 1, use one of the geometric

samples xi and activate it by setting Ai,t = 1.

Estimate the best initial assignment of the points activated by t0 (using a few additional

geometric samples)

On a query xj , use the sketch to estimate the weight wj and generate the remainder of

the timeline Aj. Then output the greedy decision for xj

Modified Analysis: Activations are no longer independent, instead either independent if Kt = 0
or “negatively correlated” if Kt = 1. The changes in cut value in the analysis are largest when

simultaneous activations occur, hence the theorems hold under the modified activation timeline.
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Fig 2. Modified Assignment timeline for dynamic streams.
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