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Streaming and Massively Parallel Algorithms for Euclidean Max-Cut

Background

Given dataset X C R? the Euclidean Max-Cut of X asks to compute:

max Y Yz -yl

resSyeX/S

Massively Parallel Computation: Points distributed across m machines each with O(dn®) words
of memory for a > 1. Each Machine can send / receive O(dn®) words each round.

Dynamic Geometric Streams [IndO4]: Dataset X C [A]d Is presented as an arbitrary sequence
of insertions & deletions of points z € X.

Prior work [CJK23] gives a dynamic streaming algorithm which finds a (1 + €) approximation in
poly(dlog(A)/e) space, but cannot determine which points lie in S. The prior best known
streaming algorithm that provides oracle-access to S requires space exponential in 1 /¢ .

Parallel and Subsampled Greedy Assighment

Theorem 1: [MPC] There is a O(1)-round fully-scalable MPC algo-
rithm which outputs a (1 + e)-approximate Euclidean max-cut using
O(nd) + n - poly(log n/e) total space.

MPC Algorithm:

1. Use shared randomness to compute and share cascaded ¢1(¢y)-sketches.

2. Generate A; and K, for each x; using the sketched weight w;.

3. If 3t <te where A; ;- K, ; = 1, communicate (xz;, w;, t) to all other machines.
4

. Estimate the best initial assignment of the points activated by ¢y (using a few additional
samples)

5. Assign each x; by maximizing the weighted contribution to the activated and kept points.

Consider X = {x1,...,xp} of n points in Euclidean space. We assign points in a greedy fashion
similar to [MS08]:

= Each point z; generates a timeline A; € {0, 1}f: at each time t = 1,..., ., it “activates” by
sampling A; ¢ ~ Ber(w; ;) with probability proportional to it's weight and 1/%.

= Each z; samples a mask K; € {0, 1}e: at each time t, z; is “kept” by sampling K, ; ~ Ber(y),
where v¢is 1 at t < tg and v/t for t > t.
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Fig 1. Assignment timeline.

Greedy Cut: We encode a partial cut at each time step ¢t € [te] as a [n] x {0,1} matrix 2! with
entries in |0, 1].

Each point assigns itself to inside/outside the cut the moment it is first activated.

= Points activated by time tg try all cut assignments.

= Points activated after ¢y are assigned greedily.

Greedy assignment: If A;; =1 fort > ty, we assign x; to the cut S'if

n t—1 n t—1
d(wj, zj) | T— L Lo 2t > dxj,z;) | —— J: S22t
LN ) 02 N T |

and otherwise assign it outside.

Analysis

Want to prove:
B (f(z") = f(z)| <233 dlwi,z)).
i=1 j=1

Proof Sketch: Like [MSO8], define a “fictitious cut” solely for analysis

0 51

Fictitious Cut: Sequence of cut matrices 2V, ... 2.

Uis set to the assignment corresponding to the optimal max-cut z*.

t
/I;.

= Z
= When z; is first activated, set 2! = 2

= \When z; is not activated, update it to:

1 t—1 1
X st—1 { t
zz-—1 g( ” $Z; +¥-gi—wi-gi)

where gt is either (1,0) or (0,1), based on the greedy decision had z; been activated at
time ¢

Rewrite in terms of fictitious cut

E|(f(z") - f(")| <E[f(z") - f(&")] = 3 E|fzh) - f(&'
t=tp+1
Further decompose the change in cut value per time step into sum of terms representing the
change in cut value when reassigning a point and the change for simultaneously updating points.

Fictitious cut defined so as to smooth the error between the true and estimated change when
(re)assigning a point, forming a martingale which decays by a factor of % each time step. Greedy
decision always maximizes the estimated change.

This allows us to bound the expression by:

B[4 - )] < (2 L+ 1) >3

For a 1+ e approximation, this requires

v > log(te) /e and

ty > \/7/€° and te >nje

Theorem 2: |Dynamic Streams| There is a dynamic streaming algo-
rithm using poly(dlog A/e) space which provides oracle access to a
(1 4 e)-approximate Euclidean max-cut.

Challenge: Cannot compute weight w; and timelines A; until end of the stream.

Solution: Geometric sampling sketches [CJK23] can sample x; ~ X with probability
proportional to w;. Use these for the simultaneously “activated” and “kept” points.

During Stream
= Sample one mask K € {0, 1},
= Draw poly(dlog(8)/e?) geometric sampling sketches from the stream.

After Stream

= [f Ky = 0, no point is activated and kept at that time. If Ky = 1, use one of the geometric
samples x; and activate it by setting A; ; = 1.

= Estimate the best initial assignment of the points activated by ¢y (using a few additional
geometric samples)

* On a query x;, use the sketch to estimate the weight w,; and generate the remainder of
the timeline A ;. Then output the greedy decision for x;

Total Space: Roughly O(tg + log(te)) points stored in expectation, gives space complexity:
poly(dlog(n)/e)

Modified Analysis: Activations are no longer independent, instead either independent if Ky = 0
or ‘negatively correlated” if K; = 1. The changes in cut value in the analysis are largest when
simultaneous activations occur, hence the theorems hold under the modified activation timeline.
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Fig 2. Modified Assignment timeline for dynamic streams.
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