Streaming Algorithms for Vertex Connectivity Network Design

Rhea Jain
University of Illinois at Urbana-Champaign

Joint work with Chandra Chekuri (UIUC), Sepideh Mahabadi (MSR Redmond), Ali Vakilian (TTIC)

Vertex Connectivity Network Design Problems

VC Survivable Network Design (VC-SNDP):

* Input: Graph G = (V, F) with edge weights w(e) € {0,...,W}; demand
pairs {s;, t;} with connectivity requirement k;

= Objective: Min-weight subgraph H C G that contains k;-vertex disjoint
s;-t; paths; l.e. s;-t; are k;-connected

* Notation: n = |V|,m = |E|, k = max; k;
VC Connectivity Augmentation (k-VC-CAP):

= Special case of VC-SNDP

* Input: “Partial solution” (k — 1)-connected graph G = (V, E); additional links
L with weights w(e) € {0,..., W}

= Objective: Min-weight set of links L' C L such that (V, EU L") is
k-connected

Streaming Network Design

Edges arrive one at a time in stream. Two models for augmentation:

= Fully Streaming: E and L both arrive in stream in arbitrary order (may be
interleaved)

= Link Arrival: E is given up-front, L arrives in stream

Goal: solve problem storing sublinear (in m) number of edges

Results

Existing results: Mostly in edge-connectivity (EC) setting [1]:

= EC-SNDP: O(tlog k)-approx in O(kn'*/*) space

= k-EC-CAP (both results with matching lower bounds):
= Link Arrival: (2 +)-approx in O(n/e) space

= Fully Streaming: O(t)-approx in O(nk + n'*/*) space

Our results [2]

= VC-SNDP: O(tk)-approx in O(k'=Vtn!*1/t) space
= k-VC-CAP:
= Link Arrival: O(1)-approx in O(n) space for k = 1,2
= Fully Streaming: O(t)-approx in O(k'~"tn!*1/%) for small k,
O(tlog —"—)-approx for large k

Note: several results in [2] not included in this poster, including improved bounds
for EC-SNDP

General Framework using Fault-Tolerant Spanners

Fault-tolerant Spanner: H is f-fault-tolerant ¢-spanner of GG if for all vertex
subsets I' C V with |F| < f, forallu,v € V\ F, dy\p(u,v) < t-dep(u,v)

Theorem [3]: In unweighted graphs, there is greedy algorithm for the f-VFT
(2t — 1)-spanner that returns subgraph of size O(f1=1/t. p!*1/t).

= Greedy algorithm can be implemented in streaming!

= Use bucketing idea for weights: keep kt-fault-tolerant ¢t-spanner H; for
each “bucket” of edges with weights between [27, 27" up to j = log W.

" Return H = U, H;
Our contribution: H contains a good approximate solution to VC-SNDP.

= Fix optimal solution OPT and use it to construct feasible solution in H

= Key Observation: In each spanner H;, If e = (u, v) is in bucket j and e is not
in H;, then H; contains k vertex-disjoint u-v paths of length at most ¢

“Integral” Analysis:

= Foreach e = (u,v) € OPT, if e € H, include in solution. If not, include k
disjoint u-v paths from H;.

= Total weight = O(kt) - w(OPT)

"Fractional” Analysis:
ldea: Construct fractional solution to natural LP instead of integral solution

* Variable z., € |0,1]| foreache € G

= Constraint for each “vertex cut”: for each disjoint S,C C V with
|Cl < k —1, must be at least one unit of flow from StoV — (SUC).

S O VA (SUC)

< >

0.25

Figure 1. Example vertex cut with feasible fractional solution.

Note: Use 2kt as fault-tolerance instead of kt

* For each e = (u,v) € OPT, if e € H, set z, = 1. If not, add ; to x. for each
e’ on the 2kt disjoint u-v paths.

= Total fractional weight = O(t)
= There exists integral solution of weight O(5t); where § is integrality gap

Integrality gap for k-VC-CAP is O(1) for k = O(n'/?) and O(log -Z;) for large k.

Link-Arrival 1-to-2 Augmentation

Objective: Augment a tree with additional links to be 2-connected. Assume
tree is rooted

= For each node, store link with LCA closest to root for each weight class
= For each node, store MST on child subtrees

Total space: O(n); Approx ratio: 3+ ¢

Link-Arrival 2-to-3 Augmentation

Main idea: Use SPQR tree: data structure decomposing 2-connected graph
into 3-connected components (see Figure 2b). Each “node” in tree is cycle (S-
node), dipole (P-node) or 3-connected (R-node).

9 A C B

49
1@2 [9
\\\ ,/, \\ /,
]. __________ 2 T=- pN e
\~—’

5| ‘6
E
7 10

(b) SPQR Tree: S-nodes A, B, D, P-node C, R-node E

74 A 10
(a) 2-connected graph

All 2-node cuts correspond to one of the following:

1. P-node: use ideas from 1-to-2 Augmentation
2. Edge on SPQR tree: use ideas from 1-to-2 Augmentation

3. Non-adjacent vertices in S-node: use ideas from 2-to-3 edge connectivity
augmentation

Total space: O(n), Approx ratio: 7+ ¢

References

[1] Ce Jin, Michael Kapralov, Sepideh Mahabadi, and Ali Vakilian. Streaming algorithms for connectivity
augmentation. In 51st International Colloquium on Automata, Languages, and Programming (ICALP), volume
297 of LIPIcs, pages 93:1-93:20. Schloss Dagstuhl - Leibniz-Zentrum fur Informatik, 2024.

2] Chandra Chekuri, Rhea Jain, Sepideh Mahabadi, and Ali Vakilian. Streaming algorithms for network design,
2025.

3] Greg Bodwin and Shyamal Patel. A trivial yet optimal solution to vertex fault tolerant spanners. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODS), pages 541-543,
2019.

