

Vertex Connectivity Network Design Problem

VC Survivable Network Design (VC-SNDP):

- Input: Graph G = (V, E) with edge weights $w(e) \in \{0, \ldots, W\}$; de pairs $\{s_i, t_i\}$ with connectivity requirement k_i
- **Objective:** Min-weight subgraph $H \subseteq G$ that contains k_i -vertex di s_i - t_i paths; i.e. s_i - t_i are k_i -connected
- Notation: $n = |V|, m = |E|, k = \max_i k_i$

VC Connectivity Augmentation (*k*-VC-CAP):

- Special case of VC-SNDP
- Input: "Partial solution" (k-1)-connected graph G = (V, E); addit L with weights $w(e) \in \{0, \ldots, W\}$
- **Objective:** Min-weight set of links $L' \subseteq L$ such that $(V, E \cup L')$ is *k*-connected

Streaming Network Design

Edges arrive one at a time in stream. Two models for augmentation:

- Fully Streaming: E and L both arrive in stream in arbitrary order (interleaved)
- Link Arrival: E is given up-front, L arrives in stream

Goal: solve problem storing sublinear (in m) number of edges

Results

Existing results: Mostly in edge-connectivity (EC) setting [1]:

- EC-SNDP: $O(t \log k)$ -approx in $\tilde{O}(kn^{1+1/t})$ space
- k-EC-CAP (both results with matching lower bounds):
- Link Arrival: $(2 + \varepsilon)$ -approx in $O(n/\varepsilon)$ space
- Fully Streaming: O(t)-approx in $O(nk + n^{1+1/t})$ space

Our results [2]

- VC-SNDP: O(tk)-approx in $\tilde{O}(k^{1-1/t}n^{1+1/t})$ space
- *k*-VC-CAP:
- Link Arrival: O(1)-approx in $\tilde{O}(n)$ space for k = 1, 2
- Fully Streaming: O(t)-approx in $\tilde{O}(k^{1-1/t}n^{1+1/t})$ for small k, $O(t \log \frac{n}{n-k})$ -approx for large k

Note: several results in [2] not included in this poster, including improved bounds for EC-SNDP.

Streaming Algorithms for Vertex Connectivity Network Design

Rhea Jain

University of Illinois at Urbana-Champaign

Joint work with Chandra Chekuri (UIUC), Sepideh Mahabadi (MSR Redmond), Ali Vakilian (TTIC)

ns	General Framework using Fault-Tolera
amand	Fault-tolerant Spanner: <i>H</i> is <i>f</i> -fault-tolerant <i>t</i> -spanner subsets $F \subseteq V$ with $ F \leq f$, for all $u, v \in V \setminus F$, $d_{H \setminus F}(u, v)$
isjoint	Theorem [3]: In <i>unweighted</i> graphs, there is greedy algo $(2t-1)$ -spanner that returns subgraph of size $O(f^{1-1/t} \cdot r)$
	 Greedy algorithm can be implemented in streaming! Use bucketing idea for weights: keep kt-fault-tolerant each "bucket" of edges with weights between [2^j, 2^{j+1}] Return H = ∪_jH_j
tional links	Our contribution: <i>H</i> contains a good approximate solution
	 Fix optimal solution OPT and use it to construct feasib Key Observation: In each spanner H_j, If e = (u, v) is in in H_j, then H_j contains k vertex-disjoint u-v paths of lease to the teach spanner teach s
	"Integral" Analysis:
(may be	 For each e = (u, v) ∈ OPT, if e ∈ H, include in solution disjoint u-v paths from H_j. Total weight = O(kt) ⋅ w(OPT)
	"Fractional" Analysis: Idea: Construct fractional solution to natural LP instead c
	 Variable x_e ∈ [0, 1] for each e ∈ G Constraint for each "vertex cut": for each disjoint S, C C ≤ k − 1, must be at least one unit of flow from S to
	S C $V \setminus (S \cup C)$

Figure 1. Example vertex cut with feasible fractional solution.

0.75

0.25

Note: Use 2kt as fault-tolerance instead of kt

- For each $e = (u, v) \in OPT$, if $e \in H$, set $x_e = 1$. If not, add $\frac{1}{k}$ to $x_{e'}$ for each e' on the 2kt disjoint u-v paths.
- Total fractional weight = O(t)
- There exists integral solution of weight $O(\beta t)$; where β is integrality gap

Integrality gap for k-VC-CAP is O(1) for $k = O(n^{1/3})$ and $O(\log \frac{n}{n-k})$ for large k.

Int Spanners

of G if for all vertex $(v, v) \leq t \cdot d_{G \setminus F}(u, v)$

orithm for the *f*-VFT $n^{1+1/t}$).

t t-spanner H_i for up to $j = \log W$.

ion to VC-SNDP.

ble solution in Hbucket j and e is not ength at most t

. If not, include k

of integral solution

 $\subseteq V$ with to $V - (S \cup C)$.

Objective: Augment a tree with additional links to be 2-connected. Assume tree is rooted

- For each node, store link with LCA closest to root for each weight class
- For each node, store MST on child subtrees

Total space: O(n); Approx ratio: $3 + \varepsilon$

Link-Arrival 2-to-3 Augmentation

Main idea: Use SPQR tree: data structure decomposing 2-connected graph into 3-connected components (see Figure 2b). Each "node" in tree is cycle (Snode), dipole (P-node) or 3-connected (R-node).

(a) 2-connected graph

All 2-node cuts correspond to one of the following:

- 1. P-node: use ideas from 1-to-2 Augmentation
- 2. Edge on SPQR tree: use ideas from 1-to-2 Augmentation
- 3. Non-adjacent vertices in S-node: use ideas from 2-to-3 edge connectivity augmentation

Total space: O(n), Approx ratio: $7 + \varepsilon$

References

- [1] Ce Jin, Michael Kapralov, Sepideh Mahabadi, and Ali Vakilian. Streaming algorithms for connectivity augmentation. In 51st International Colloquium on Automata, Languages, and Programming (ICALP), volume 297 of LIPIcs, pages 93:1-93:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.
- [2] Chandra Chekuri, Rhea Jain, Sepideh Mahabadi, and Ali Vakilian. Streaming algorithms for network design, 2025.
- [3] Greg Bodwin and Shyamal Patel. A trivial yet optimal solution to vertex fault tolerant spanners. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODS), pages 541–543, 2019.

Link-Arrival 1-to-2 Augmentation