
Streaming Algorithms for Vertex Connectivity Network Design
Rhea Jain

University of Illinois at Urbana-Champaign

Joint work with Chandra Chekuri (UIUC), Sepideh Mahabadi (MSR Redmond), Ali Vakilian (TTIC)

Vertex Connectivity Network Design Problems

VC Survivable Network Design (VC‐SNDP):

Input: Graph G = (V, E) with edge weights w(e) ∈ {0, . . . , W}; demand
pairs {si, ti} with connectivity requirement ki

Objective: Min‐weight subgraph H ⊆ G that contains ki‐vertex disjoint
si‐ti paths; i.e. si‐ti are ki‐connected
Notation: n = |V |, m = |E|, k = maxi ki

VC Connectivity Augmentation (k‐VC‐CAP):

Special case of VC‐SNDP
Input: “Partial solution” (k − 1)‐connected graph G = (V, E); additional links
L with weights w(e) ∈ {0, . . . , W}
Objective: Min‐weight set of links L′ ⊆ L such that (V, E ∪ L′) is
k‐connected

Streaming Network Design

Edges arrive one at a time in stream. Two models for augmentation:

Fully Streaming: E and L both arrive in stream in arbitrary order (may be
interleaved)
Link Arrival: E is given up‐front, L arrives in stream

Goal: solve problem storing sublinear (in m) number of edges

Results

Existing results: Mostly in edge‐connectivity (EC) setting [1]:

EC‐SNDP: O(t log k)‐approx in Õ(kn1+1/t) space
k‐EC‐CAP (both results with matching lower bounds):
Link Arrival: (2 + ε)‐approx in Õ(n/ε) space
Fully Streaming: O(t)‐approx in Õ(nk + n1+1/t) space

Our results [2]

VC‐SNDP: O(tk)‐approx in Õ(k1−1/tn1+1/t) space
k‐VC‐CAP:
Link Arrival: O(1)‐approx in Õ(n) space for k = 1, 2
Fully Streaming: O(t)‐approx in Õ(k1−1/tn1+1/t) for small k,
O(t log n

n−k)‐approx for large k

Note: several results in [2] not included in this poster, including improved bounds
for EC‐SNDP.

General Framework using Fault-Tolerant Spanners

Fault‐tolerant Spanner: H is f‐fault‐tolerant t‐spanner of G if for all vertex
subsets F ⊆ V with |F | ≤ f , for all u, v ∈ V \ F , dH\F (u, v) ≤ t · dG\F (u, v)

Theorem [3]: In unweighted graphs, there is greedy algorithm for the f‐VFT
(2t − 1)‐spanner that returns subgraph of size O(f 1−1/t · n1+1/t).

Greedy algorithm can be implemented in streaming!
Use bucketing idea for weights: keep kt‐fault‐tolerant t‐spanner Hj for
each “bucket” of edges with weights between [2j, 2j+1] up to j = log W .
Return H = ∪jHj

Our contribution: H contains a good approximate solution to VC‐SNDP.

Fix optimal solution OPT and use it to construct feasible solution in H

Key Observation: In each spanner Hj, If e = (u, v) is in bucket j and e is not
in Hj, then Hj contains k vertex‐disjoint u‐v paths of length at most t

“Integral” Analysis:

For each e = (u, v) ∈ OPT, if e ∈ H , include in solution. If not, include k
disjoint u‐v paths from Hj.
Total weight = O(kt) · w(OPT)

”Fractional” Analysis:
Idea: Construct fractional solution to natural LP instead of integral solution

Variable xe ∈ [0, 1] for each e ∈ G

Constraint for each “vertex cut”: for each disjoint S, C ⊆ V with
|C| ≤ k − 1, must be at least one unit of flow from S to V − (S ∪ C).

S
C

V \ (S ∪ C)

0.75

0.25
Figure 1. Example vertex cut with feasible fractional solution.

Note: Use 2kt as fault‐tolerance instead of kt

For each e = (u, v) ∈ OPT, if e ∈ H , set xe = 1. If not, add 1
k to xe′ for each

e′ on the 2kt disjoint u‐v paths.
Total fractional weight = O(t)
There exists integral solution of weight O(βt); where β is integrality gap

Integrality gap for k‐VC‐CAP is O(1) for k = O(n1/3) and O(log n
n−k) for large k.

Link-Arrival 1-to-2 Augmentation

Objective: Augment a tree with additional links to be 2‐connected. Assume
tree is rooted

For each node, store link with LCA closest to root for each weight class
For each node, store MST on child subtrees

Total space: O(n); Approx ratio: 3 + ε

Link-Arrival 2-to-3 Augmentation

Main idea: Use SPQR tree: data structure decomposing 2‐connected graph
into 3‐connected components (see Figure 2b). Each “node” in tree is cycle (S‐
node), dipole (P‐node) or 3‐connected (R‐node).

1 2

3

4

5 6

7

8 9

10

(a) 2‐connected graph

1 2

3
4

5 6

7

8 9

10

5 6

1 2

1

1

2

2

A BC

D

E

(b) SPQR Tree: S‐nodes A, B, D, P‐node C , R‐node E

All 2‐node cuts correspond to one of the following:

1. P‐node: use ideas from 1‐to‐2 Augmentation
2. Edge on SPQR tree: use ideas from 1‐to‐2 Augmentation
3. Non‐adjacent vertices in S‐node: use ideas from 2‐to‐3 edge connectivity
augmentation

Total space: O(n), Approx ratio: 7 + ε

References

[1] Ce Jin, Michael Kapralov, Sepideh Mahabadi, and Ali Vakilian. Streaming algorithms for connectivity
augmentation. In 51st International Colloquium on Automata, Languages, and Programming (ICALP), volume
297 of LIPIcs, pages 93:1–93:20. Schloss Dagstuhl ‐ Leibniz‐Zentrum für Informatik, 2024.

[2] Chandra Chekuri, Rhea Jain, Sepideh Mahabadi, and Ali Vakilian. Streaming algorithms for network design,
2025.

[3] Greg Bodwin and Shyamal Patel. A trivial yet optimal solution to vertex fault tolerant spanners. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODS), pages 541–543,
2019.

