Black-Box k-to-1 PCA Reductions

Problem statement. (k-PCA)
Let D be a distribution on R? with covariance matrix 3.

(restricted) sample access to D

Input:

Output: (approx.) top-k eigenvectors of 2.

Ubiquitous in statistical estimation, dimensionality reduction

Indirect access to X (can’t perform matrix-vector products)

Extensively studied under various notions of restrictions recently
> 1.i.d. samples, corrupted samples, correlated samples
> differential privacy, fairness,

However, most works obtain guarantees only for k =1
> But, many practical applications need £ > 1

Can we generalize these existing techniques to £ > 1?

Introducing deflation: A generic reduction to 1-PCA

Input: > k€ |[d]
>  O..pca, an arbitrary oracle for (approximate) 1-PCA
> M, ad x dPSD matrix, (access through O;_pca)

1. Py« I

2. Fori € [kl

21 U; < Orpaa(P;—1MP;_1)
22 P, « P;,_1 —uu,

()

(identity projection)
(top component in projected space)

(updating the projection)

Output: {ug,...,up}

Repeatedly deflates the directions returned by O,.pca
Importantly, can be performed using samples (w/o direct access to M)

A natural but not-well-understood technique

Existing literature on deflation

If the 1-PCA oracle, O,.pca, is exact, then deflation is exact
Main question: What if O,pca is only approximately correct?

Challenge: How do approximation errors compound?
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Approximation notion: energy

An orthonormal matrix U = (uq,...,ug) € R%*%F js an e-approximate
k-energy-PCA of a PSD matrix M € R%*4 if

k

k
ZuZTMuZ > (1 —¢€) Z)\Z(M)

1=1

Maximum amount of energy/variance: 3+, A;(M)
> Achieved when u;’s are leading eigenvectors

Is deflation energy-(PCA)-efficient?

Theorem: [jKLPPT24]

If the deflation algorithm uses e-approximate 1-energy-PCA as O.pca
subroutine, then it outputs an e-approximate k-energy-PCA.

Proof. We proceed by induction on i € [k]; for disambiguation let U; € R%** denote the horizontal

concatenation of the first ¢ calls to O1pca, so that P; =15 — U,-UiT. Observe that

Tr (ULlMUiH) — Tr (U;r MUi> +ul  Mugsg
> (1—¢) [[M|; + (1 —¢) |P;:MP;]|

2 (1 =€) [[M]}; + (1 = €)oi+1(M) = (1 — €) [Ml;; -

Application: robust and heavy-tailed k-PCA

Theorem (Robust heavy-tailed k-ePCA)

Let p > 4, and let D be a 2-to-p hypercontractive on RY with mean 0

and covariance X. Let € € (0,¢p), 6 € (0,1), and v = @(el—%) such that
v € (0,70) for absolute constants €g, 7. Let T be an e-corrupted set of

samples from D with | T| = ©(B( L8 dilzog(l/é))) for an appropriate

2
constant, where 3 := Coe™ ». Then, Algorithm Ay with inputs T, ¢, 7, 4,

and k outputs orthonormal U € R9*k such that with probability > 1 —4, U

is a v-k-ePCA of X. The algorithm takes time O %"polylog(%)).
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Approximation notion: correlation

An orthonormal matrix U € R%¥* is a (A,T)-approximate k-

correlation-PCA of a PSD matrix M € R4%? if

|(v<0-DA) Tu|2 < A,

where V<(—2)Xx is the orthonormal matrix of eigenvectors of M with
eigenvalues less than (1 — I') Ag.

(Relation with energy PCA) Up to some loss in parameters,

> 1-correlation-PCA — 1-energy-PCA
> k-energy-PCA — k-correlation-PCA

Our energy-PCA result — deflation performs (lossy) correlation-PCA

Can deflation avoid this parameter loss?

Theorem: Informal [jkLppT24]

» (Lossless) If A = O(I'?), then can take § = O (A), v = Ox(I).

» (Lossy) If A = Q(T'?), then deflation can be lossy even for k = 2.

Dependence on k can likely be improved (currently quasipolynomial)

Theorem (Heavy-tailed k-cPCA)

Let p >4 and B € (0,1) be reals. Let D be a 2-to-p hypercontractive on
RY with mean 04 and covariance X. Let (A,T) € (0,1) such that

A -k (X)2 <2 Set § = k—OUogk) . A and v = ©(k=3) - T for
appropriate constants. Define the quantities

Y (C,?nk (X) Vk

= ) . R :=0(aTr (%)).

If n= (9(0“7";‘,‘y(22)2 Iog(%)), then the deflation algorithm run with Oja as

the 1-PCA oracle returns a (A, IN)-k-cPCA of X with probability > 1 — 3.
The algorithm takes time O(ndk).




