Black-Box k-to-1 PCA Reductions

Arun Jambulapati
Shourya Pandey*

Syamantak Kumar Ankit Pensia K

Jerry Li Kevin Tian

Problem statement. (k-PCA)

Let \mathcal{D} be a distribution on \mathbb{R}^d with covariance matrix Σ .

Input: (restricted) sample access to \mathcal{D}

Output: (approx.) top-k eigenvectors of Σ .

- ► Ubiquitous in statistical estimation, dimensionality reduction
- Indirect access to Σ (can't perform matrix-vector products)
- Extensively studied under various notions of restrictions recently
 - ▷ i.i.d. samples, corrupted samples, correlated samples
 - differential privacy, fairness,
- lacktriangle However, most works obtain guarantees only for k=1
 - \triangleright But, many practical applications need k>1

Can we generalize these existing techniques to k>1?

Introducing deflation: A generic reduction to 1-PCA

Input: \triangleright $k \in [d]$

 \triangleright $\mathcal{O}_{\text{1-PCA}}$, an arbitrary oracle for (approximate) 1-PCA

ho $m{M}$, a d imes d PSD matrix, (access through $\mathcal{O}_{ exttt{1-PCA}}$)

1. $\mathbf{P}_0 \leftarrow \mathbf{I}_d$

(identity projection)

2. For $i \in [k]$:

2.1 $u_i \leftarrow \mathcal{O}_{\text{1-PCA}}(\mathbf{P}_{i-1}\mathbf{M}\mathbf{P}_{i-1})$ 2.2 $\mathbf{P}_i \leftarrow \mathbf{P}_{i-1} - u_iu_i^{\top}$ (top component in projected space)
(updating the projection)

Output: $\{u_1\}$

 $\{u_1,\ldots,u_k\}$

- ightharpoonup Repeatedly deflates the directions returned by $\mathcal{O}_{ extsf{1-PCA}}$
- ightharpoonup Importantly, can be performed using samples (w/o direct access to ${f M}$)
- ► A natural but not-well-understood technique

Existing literature on deflation

- If the 1-PCA oracle, $\mathcal{O}_{1\text{-PCA}}$, is exact, then deflation is exact
- ▶ Main question: What if $\mathcal{O}_{1\text{-PCA}}$ is only approximately correct?
- ► Challenge: How do approximation errors compound?

Approximation notion: energy

An orthonormal matrix $\mathbf{U}=(u_1,\dots,u_k)\in\mathbb{R}^{d imes k}$ is an ϵ -approximate k-energy-PCA of a PSD matrix $\mathbf{M}\in\mathbb{R}^{d imes d}$ if

$$\sum_{i=1}^k u_i^\top \mathbf{M} u_i \geq (1-\epsilon) \sum_{i=1}^k \lambda_i(\mathbf{M})$$

- Maximum amount of energy/variance: $\sum_{i=1}^k \lambda_i(\mathbf{M})$
 - \triangleright Achieved when u_i 's are leading eigenvectors

Is deflation energy-(PCA)-efficient?

Theorem: [JKLPPT24]

If the deflation algorithm uses ϵ -approximate 1-energy-PCA as $\mathcal{O}_{\text{1-PCA}}$ subroutine, then it outputs an ϵ -approximate k-energy-PCA.

Proof. We proceed by induction on $i \in [k]$; for disambiguation let $\mathbf{U}_i \in \mathbb{R}^{d \times i}$ denote the horizontal concatenation of the first i calls to $\mathcal{O}_{1\text{PCA}}$, so that $\mathbf{P}_i = \mathbf{I}_d - \mathbf{U}_i \mathbf{U}_i^{\top}$. Observe that

$$\operatorname{Tr}\left(\mathbf{U}_{i+1}^{\top}\mathbf{M}\mathbf{U}_{i+1}\right) = \operatorname{Tr}\left(\mathbf{U}_{i}^{\top}\mathbf{M}\mathbf{U}_{i}\right) + u_{i+1}^{\top}\mathbf{M}u_{i+1}$$

$$\geq (1 - \epsilon) \|\mathbf{M}\|_{i} + (1 - \epsilon) \|\mathbf{P}_{i}\mathbf{M}\mathbf{P}_{i}\|_{\operatorname{op}}$$

$$\geq (1 - \epsilon) \|\mathbf{M}\|_{i} + (1 - \epsilon)\sigma_{i+1}(\mathbf{M}) = (1 - \epsilon) \|\mathbf{M}\|_{i+1}.$$

Approximation notion: correlation

► Geometric notion: output has low correlation with low eigendirections

An orthonormal matrix $\mathbf{U}\in\mathbb{R}^{d\times k}$ is a (Δ,Γ) -approximate k-correlation-PCA of a PSD matrix $\mathbf{M}\in\mathbb{R}^{d\times d}$ if

$$\| (\mathbf{V}^{<(1-\Gamma)\lambda_k})^{\top} \mathbf{U} \|_{\mathrm{Fr}}^2 \leq \Delta,$$

where $\mathbf{V}^{<(1-\Delta)\lambda_k}$ is the orthonormal matrix of eigenvectors of \mathbf{M} with eigenvalues less than $(1-\Gamma)\lambda_k$.

- ► (Relation with energy PCA) Up to some loss in parameters,
 - $\triangleright 1$ -correlation-PCA $\Longrightarrow 1$ -energy-PCA
 - $\triangleright k$ -energy-PCA $\implies k$ -correlation-PCA
- ightharpoonup Our energy-PCA result \Longrightarrow deflation performs (lossy) correlation-PCA

Can deflation avoid this parameter loss?

Theorem: Informal [JKLPPT24]

- lacksquare (Lossless) If $\Delta=O(\Gamma^2)$, then can take $\delta=\Theta_k(\Delta)$, $\gamma=\Theta_k(\Gamma)$.
- lacktriangle (Lossy) If $\Delta=\Omega(\Gamma^2)$, then deflation can be lossy even for k=2.
- lacktriangle Dependence on k can likely be improved (currently quasipolynomial)

Application: robust and heavy-tailed k-PCA

Theorem (Robust heavy-tailed k-ePCA)

Let $p \geq 4$, and let \mathcal{D} be a 2-to-p hypercontractive on \mathbb{R}^d with mean \mathbb{O}_d and covariance Σ . Let $\epsilon \in (0,\epsilon_0)$, $\delta \in (0,1)$, and $\gamma = \Theta(\epsilon^{1-\frac{2}{p}})$ such that $\gamma \in (0,\gamma_0)$ for absolute constants ϵ_0,γ_0 . Let T be an ϵ -corrupted set of samples from \mathcal{D} with $|T| = \Theta(\beta(\frac{d\log d + \log(1/\delta)}{\gamma^2}))$ for an appropriate constant, where $\beta := C_p^6 \epsilon^{-\frac{2}{p}}$. Then, Algorithm \mathcal{A}_k with inputs T, ϵ , γ , δ , and k outputs orthonormal $U \in \mathbb{R}^{d \times k}$ such that with probability $\geq 1 - \delta$, U is a γ -k-ePCA of Σ . The algorithm takes time $O(\frac{ndk}{\gamma^2} \operatorname{polylog}(\frac{d}{\epsilon \delta}))$.

Theorem (Heavy-tailed k-cPCA)

Let $p \geq 4$ and $\beta \in (0,1)$ be reals. Let \mathcal{D} be a 2-to-p hypercontractive on \mathbb{R}^d with mean \mathbb{O}_d and covariance Σ . Let $(\Delta, \Gamma) \in (0,1)$ such that $\Delta \cdot \kappa_k(\Sigma)^2 \leq \Gamma^2$. Set $\delta = k^{-\Theta(\log k)} \cdot \Delta$ and $\gamma = \Theta(k^{-3}) \cdot \Gamma$ for appropriate constants. Define the quantities

$$\alpha := \left(\frac{C_p^2 \kappa_k\left(\mathbf{\Sigma}\right) \sqrt{k}}{\Gamma \sqrt{\Delta}}\right)^{\frac{1}{p-2}}, \ R := \Theta(\alpha \mathsf{Tr}\left(\mathbf{\Sigma}\right)).$$

If $n = \Theta(\frac{\alpha d\kappa_k(\Sigma)^2}{\delta\gamma^2}\log(\frac{d}{\beta}))$, then the deflation algorithm run with Oja as the 1-PCA oracle returns a (Δ, Γ) -k-cPCA of Σ with probability $\geq 1 - \beta$. The algorithm takes time O(ndk).