Oja’s Algorithm for Streaming PCA: Spectral Guarantees

Background

Principal component analysis (PCA): given a matrix X € R4, want
to find the top eigenvector of its covariance matrix %XTX

Adversarial streaming setting: given arbitrary data points x,..., X, in
a stream, want to approximate U, s.t. [(U5, vi)| & 1 using O(d) space

Qja’s algorithm: start with random unit vector vg, updating with
learning ruel viy; = v; +77x,4+1xlv11v,'

Want to bound performance in adversarial streams with a logarithmic
spectral ratio R = A\1/\2 = 01/02

Algorithm

We analyze the modified version of Oja's algorithm presented in
Price & Xun 2024, summarized here:

Algorithm 1 OjaCheckingGrowth - checks if 7 is too small of a learning rate

Initialize 9y  S%! uniformly at random
for i =1 ton do
Perform Oja’s update: viy1 = v;i + nz,“levl
if [|va|| < d'° then return L
else return o,

Algorithm 2 AdversarialPCA - full algorithm

Let b= O(log nd) be the number of bits needed to express each matrix entry Xi;

Let n; = 2°, for each |i| < O(b)

Run OjaCheckingGrowth for each 7; in parallel; simultaneously track Z = arg max ||z;||
Let i* be the smallest i on which OjaCheckingGrowth outputs v # 1

if 7()||z|| > 1 then return &

else return 9
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Lower Bound

Theorem (lower bound, informal)

For any sufficiently small constant C > 0 and spectral ratio R < Clogd,
there exists an instance on which AdversarialPCA fails to output a suitable
Vn with high probability.

Proof Overview: Our instance X € R where n = R + 2 notably
includes R — 1 copies of ﬁel immediately followed by the row

Jret Jze
1 -1 0 ...0
10 0 0
1
X VR|1 0 0 ... 0
11 0 ...0
0 0 V3 ... 0

@ Principal component: e; (x; ensures symmetry of stream)
@ Spectral ratio: &~ R/3; max norm vector: xg.2, uncorrelated with e;
o [(va,er) = (L+ B, [(va e2)] = F(1+ R)F

Intuition:

o 7 must be large enough for (v, e1) to grow more than a factor of
poly(d), so n = Q(log d)

o Growth in direction e; also benefits non-principal directions e (and
then e3), so necessarily n < R.

o For sufficiently small R = O(log d), this is a contradiction.

Combined with the upper bound, this spectral ratio requirement is tight
(up to a constant factor) for streams with row-sparsity s = O(1).

Upper Bound

We assume X = MQT, for orthogonal Q € R?%9 and M € R"*? has at
most s nonzero entries per row.

Theorem (upper bound)

Given spectral ratio R = Q(slog d), AdversarialPCA outputs ¥, satisfying
(0n, vi)? > 1 — O(&9) with high probabilty.

Proof Overview: We show the growth's “error” term is O(o1):
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Here, P = | — v, v, projects away from the principal component.

Intuition: Consider when each data point x; has a nonzero contribution to
only 1 non-principal direction w;, and when {1,...,n} can be partitioned
into contiguous disjoint sets S; = {jj_y +1,..., i} containing the points
x; contributing to non-principal direction w;.
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We now claim 7Y jes, (i, P¥i—1)* < 03— #=1—, using that

‘ ak
(xi, PVi—1)2 = (x;, w;)?(Vi_1, w;)? and that (¥;_1, w;)? is bounded by the
fraction of growth from indices in S; and the total growth thus far.

: 1 ; ; ; 2 2
Since 1 — & < log x, summing this across all j telescopes to o3 log ||va||*.

Future Work

@ Improve spectral ratio upper bound for general matrices; unclear
whether O(log d) spectral ratio is obtainable. Note Kacham &
Woodruff 2024 showed O(log? d) is obtainable by combining
AdversarialPCA and row-norm sketching

@ Extend upper/lower bounds to Oja’s algorithm for top k principal
components



