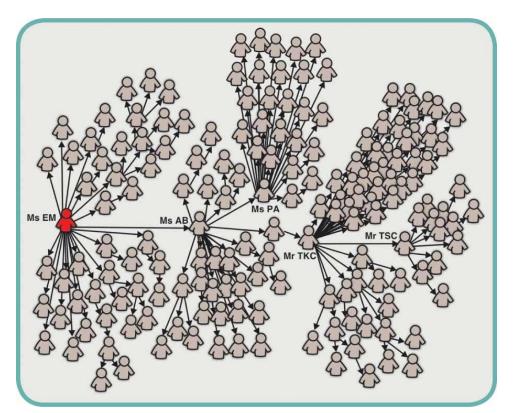
Learning Networks from Dynamics: Detecting Abrupt Changes in Point Processes

Learning a network from diffusions

Motivating example: network epidemics



Contact network of the first 144 cases of a SARS outbreak in Singapore (src: Normile'13)

- Network structure impacts the spread of epidemics in significant and complex ways
- If the network is known, then we can design effective mitigation measures
- Networks are typically learned through contact tracing \Rightarrow time-consuming
- Can key features of the network be learned in a data-driven manner?

Prior work in learning from dynamics

Exact estimation of networks from diffusions

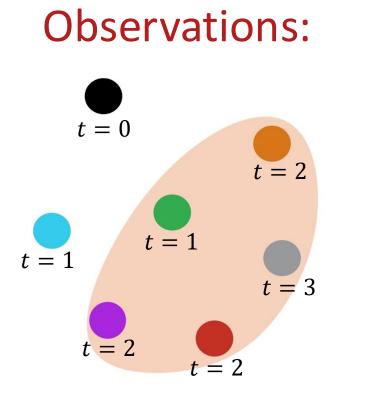
- Early empirical work in epidemiology [Wallinga-Teunis'04] and information flow in blogs [Adar-Adamic'05]
- Scalable and principled methods: the NetInf algorithm [Gomez-Rodriguez et. al.'12]
- Sample complexity of learning networks from cascades
- Convex optimization, message passing, etc.
- Related: learning linear dynamical systems from time series

Common thread: theoretical works are based on optimal estimators (likelihood based) and used to recover the *entire network*

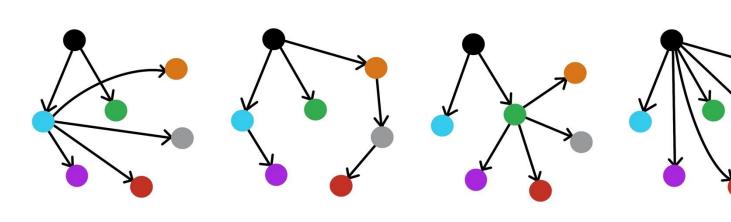
Anna Brandenberger, Elchanan Mossel, Ani Sridhar Massachusetts Institute of Technology

This work: inference of high-degree vertices

Mathematical abstraction: a diffusion (e.g., cascade epidemic) spreads on an unknown graph. Given the "infection times" for each vertex, learn the network.



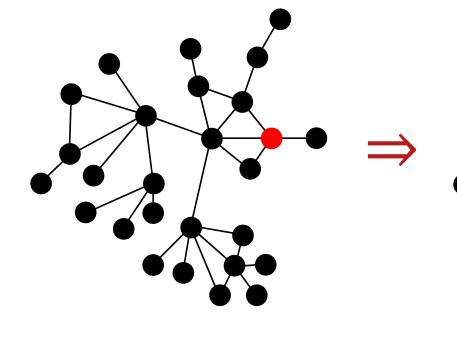
Many possible explanations:



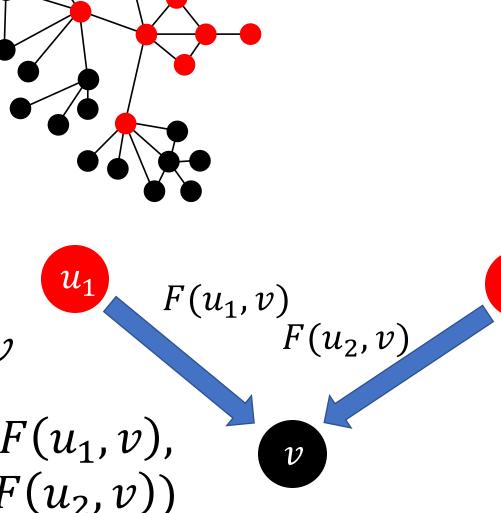
To determine individual edges, need to observe many diffusions on the graph

Instead: attempt to infer only high degree vertices \Rightarrow can this be done in a single diffusion?

The model of continuous time diffusion: Susceptible Infected model, first passage percolation



 $\lambda =$ (pairwise) spreading rate T(v) =infection time of vertex v



 $T(v) = \min(T(u_1) + F(u_1, v),$ $T(u_2) + F(u_2, v))$

Specifically, let $\mathcal{I}(t)$ be the set of infected vertices at time t. Then, for an uninfected vertex v,

 $P\{v \in \mathcal{I}(t+\epsilon) \mid \mathcal{I}(t)\} = \epsilon \mid \mathcal{N}(v) \cap \mathcal{I}(t) \mid + o(\epsilon)$

where $\mathcal{N}(v)$ is the set of neighbors of v.

Model assumptions: given a graph G with *n* vertices

- At most m (fixed) are high-degree (degree $D \ge n^{\alpha}$
- The rest are low degree (degree $d \leq n^{o(1)}$),
- Two high degree vertices u and v satisfy dist(u, v) $\omega(1)$ as $n \to \infty$.

Main result: phase transition in
$$\alpha$$

Theorem (Mossel-Sridhar'24). Let $\alpha < 1/2$. There exists a distribution μ over
admissible graphs such that if $G \sim \mu$ then it is impossible to tell whether there exists a
high-degree vertex with probability greater than $o(1)$ as $n \to \infty$.
Theorem (B.-Mossel-Sridhar'24+). Let $\alpha > 1/2$. There is an algorithm (depending
on α) which outputs a set S of time indices satisfying
 $\{T(v) : \deg(v) \ge D\} \subseteq S \subseteq \bigcup_{v \deg(v) \ge D} (T(v) - \delta, T(v) + \delta)$
with probability $1 - o(1)$, where $\delta = 1/poly(n)$.
Impossible
 $\alpha = 0$
 $T_{int} = 0$

3. Conditions for detection. If $deg(v) \ge D$ then

The jump can be detected if

$ig|I(T(v)+\delta)-\overline{I}_{\ell-1}(T(v)+\delta,T(v)^-)ig|\gtrsim D\delta$ be detected if $D\gtrsim n\delta^{\ell-1}+\sqrt{rac{n}{\delta}}\Rightarrow D\gtrsim n^{\ell/(2\ell-1)} ext{ with }\delta=n^{-1/(2\ell-1)}$