Learning Networks from Dynamics: Detecting Abrupt Changes in Point Processes

Learning a network from diffusions

This work: inference of high-degree vertices

Main result: phase transition in o

Motivating example: network epidemics

* Network structure
impacts the spread of
epidemics in significant
and complex ways

* |f the network is

known, then we can
design effective
mitigation measures

* Networks are typically learned through contact
tracing = time-consuming

* Can key features of the network be learned in a
data-driven manner?

Prior work in learning from dynamics

Exact estimation of networks from diffusions

* Early empirical work in epidemiology [Wallinga-
Teunis’04] and information flow in blogs [Adar-
Adamic’05]

* Scalable and principled methods: the NetInf
algorithm [Gomez-Rodriguez et. al.”12]

* Sample complexity of learning networks from
cascades

* Convex optimization, message passing, etc.

* Related: learning linear dynamical systems
from time series

Common thread: theoretical works are based on
optimal estimators (likelihood based) and used to
recover the entire network

Mathematical abstraction: a diffusion (e.g., cascade or
epidemic) spreads on an unknown graph. Given the
“infection times” for each vertex, learn the network.

Observations: Many possible explanations:
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observe many diffusions on the graph

Instead: attempt to infer only high degree vertices
= can this be done in a single diffusion?

The model of continuous time diffusion: Susceptible-
Infected model, first passage percolation
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A = (pairwise) spreading rate
T'(v) = infection time of vertex v

T(v) = min(T(uqy) + F(uq,v),
T(uZ) + F(uz, U))

Specifically, let 7(t) be the set of infected vertices at
time t. Then, for an uninfected vertex v,

P{lved(t+e)lIt)}=€e|Nw)nI(t)|+ o(e)

where V' (v) is the set of neighbors of v.

Model assumptions: given a graph G with n vertices

* At most m (fixed) are high-degree (degree D = n%),

* The rest are low degree (degree d < no(l)),

* Two high degree vertices u and v satisfy dist(u, v) =
w(1l) asn — oo,

Theorem (Mossel-Sridhar’24). Let &« < 1/2. There exists a distribution u over
admissible graphs such that if G ~ u then itis impossible to tell whether there exists a
high-degree vertex with probability greater than 0(1) asn — oo.

Theorem (B.-Mossel-Sridhar’24+). Let « > 1/2. There is an algorithm (depending
on &) which outputs a set S of time indices satisfying

(T(v):deg(v) >D}CSC |
v:deg(v)=D
with probability 1 — o(1), where § = 1/poly(n).
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Main ideas: 1. Second derivative of infection curve J(t)
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* Second derivative of the infection curve is a (nearly) unbiased estimator for vertex
degree. This identifies when a high-degree vertex is infected if « > 2/3.

Main ideas: 2. Higher derivatives of infection curve

1. Local polynomial approximation. Whp, for every t = 0 there is a degree £ — 1
polynomial I,_; (-, t) with F;-meas. coefficients such that

I(s) — I;-1(s,t)| Sné* +Vnd,  se(t—4,t+4),
provided no abrupt changes (high-deg infections) in (t — §,t + 6).
2. Analysis of higher-order derivatives. We show that
API() = I(t +6) = Tra(t + 6,¢7) | O (nd’ + v/nd)

Residual: Difference between local polynomial prediction based on info before time t
and actual process behavior
Note: Residual is similar in magnitude to error terms when no large jumps, by Step 1.

3. Conditions for detection. If deg(v) > D then
I(T(v) +68) — I;-1(T(v) + §,T(v) )| 2 D6

The jump can be detected if

D2nd 4/ % = D2 nfC Y with § = n /000
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