
Learning Networks from Dynamics: Detecting Abrupt Changes in Point Processes
Anna Brandenberger, Elchanan Mossel, Ani Sridhar

Massachusetts Institute of Technology

Motivating example: network epidemics

Learning a network from diffusions

Prior work in learning from dynamics

This work: inference of high-degree vertices Main result: phase transition in 𝛼 

Main ideas: 1. Second derivative of infection curve ℐ(t)

Contact network of the first 
144 cases of a SARS 
outbreak in Singapore (src: 
Normile’13) 

• Networks are typically learned through contact 
tracing ⇒ time-consuming

• Can key features of the network be learned in a 
data-driven manner?

Exact estimation of networks from diffusions

• Early empirical work in epidemiology [Wallinga-

Teunis’04] and information flow in blogs [Adar-

Adamic’05]

• Scalable and principled methods: the NetInf 

algorithm [Gomez-Rodriguez et. al.’12]

• Sample complexity of learning networks from 

cascades 

• Convex optimization, message passing, etc.

• Related: learning linear dynamical systems 

from time series

Common thread: theoretical works are based on 

optimal estimators (likelihood based) and used to 

recover the entire network

• Network structure 

impacts the spread of 

epidemics in significant 

and complex ways 

• If the network is 

known, then we can 

design effective 

mitigation measures

Mathematical abstraction: a diffusion (e.g., cascade or 
epidemic) spreads on an unknown graph. Given the 
“infection times” for each vertex, learn the network.
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observe many diffusions on the graph

Many possible explanations:Observations:

Instead: attempt to infer only high degree vertices
⇒ can this be done in a single diffusion?

Facebook:    2.7+ billion monthly active users
 1.8+ billion daily active users

𝜆 = (pairwise) spreading rate

𝑇(𝑣) = infection time of vertex 𝑣

The model of continuous time diffusion: Susceptible-
Infected model, first passage percolation

⇒

𝑇 𝑣 = min(𝑇 𝑢1 + 𝐹 𝑢1, 𝑣 ,
 𝑇 𝑢2 + 𝐹 𝑢2, 𝑣 )
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Theorem (B.-Mossel-Sridhar’24+). Let 𝛼 > 1/2. There is an algorithm (depending 
on 𝛼) which outputs a set 𝑆 of time indices satisfying

with probability 1 − 𝑜(1), where 𝛿 = 1/𝑝𝑜𝑙𝑦(𝑛).

Theorem (Mossel-Sridhar’24). Let 𝛼 < 1/2. There exists a distribution 𝜇 over 
admissible graphs such that if 𝐺 ∼ 𝜇 then it is impossible to tell whether there exists a 
high-degree vertex with probability greater than 𝑜 1  as 𝑛 → ∞.

Model assumptions: given a graph G with 𝑛 vertices
• At most 𝑚 (fixed) are high-degree (degree 𝐷 ≥ 𝑛𝛼),

• The rest are low degree (degree 𝑑 ≤ 𝑛𝑜 1 ),
• Two high degree vertices 𝑢 and 𝑣 satisfy 𝑑𝑖𝑠𝑡 𝑢, 𝑣 =

𝜔(1) as 𝑛 → ∞.

Specifically, let ℐ 𝑡  be the set of infected vertices at 
time 𝑡. Then, for an uninfected vertex 𝑣,  

𝑃 𝑣 ∈ ℐ 𝑡 + 𝜖 ℐ 𝑡 = 𝜖 𝒩 𝑣 ∩ ℐ 𝑡 + 𝑜(𝜖)

where 𝒩 𝑣  is the set of neighbors of 𝑣.
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• Second derivative of the infection curve is a (nearly) unbiased estimator for vertex 
degree. This identifies when a high-degree vertex is infected if 𝛼 > 2/3.

Main ideas: 2. Higher derivatives of infection curve

1. Local polynomial approximation. Whp, for every 𝑡 ≥ 0 there is a degree ℓ − 1 
polynomial ҧ𝐼ℓ−1(⋅, 𝑡) with ℱ𝑡-meas. coefficients such that  

provided no abrupt changes (high-deg infections) in 𝑡 − 𝛿, 𝑡 + 𝛿 .

2. Analysis of higher-order derivatives. We show that

Residual: Difference between local polynomial prediction based on info before time t 
and actual process behavior

3. Conditions for detection. If deg 𝑣 ≥ 𝐷 then  

The jump can be detected if 

Note: Residual is similar in magnitude to error terms when no large jumps, by Step 1.
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