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Ø Hierarchical Clustering: organize data with a hierarchy of clusters

Dasgupta’s Cost for HC
The additive error of 𝜴 𝒏𝟐/𝜺 is necessary in the weight-DP model:
• Inspired by the lower bound instance for edge-DP
• Main idea: Embed the disjoint 5-cycle graphs into a complete graph

Background

Datasets and Baseline:
• Synthetic: SBM and HSBM graphs
• Real-world: datasets from sk-learn (standard in the literature)
• Baseline: Input perturbation

Experiments

Approximate Dasgupta’s cost with balanced sparsest cut:
• Sparsity of a graph: 𝜙" = min
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• Balanced sparsest cut: the cut induced by (𝑆∗, 𝑉\𝑆∗). And |𝑆∗| = 𝑂(𝑛).
• 𝑂(𝛼)-approximation of balanced sparsest cut w.r.t. the sparsity gives 
𝑂(𝛼)-approximation of the optimal Dasgupta’s cost.

• 𝛼 = 𝑂( log 𝑛 ) for balanced sparsest cut has a poly-time algorithm (A-1).

Differential privacy models on graphs: 

• Node-DP: Neighboring graphs differ by a node.

• Edge-DP: Neighboring graphs differ by an edge.

• Weight-DP: Neighboring graphs have weights with 𝑙. difference ≤ 1.

Prior work on DP Hierarchical Clustering [Imola et al. 23]:

• Upper Bound: ;𝑂(𝑛//𝜀) additive error. But requires exponential time.

• Lower Bound: Ω 𝑛//𝜀 additive error even when the optimal cost is 𝑂(𝑛).

• Achieving 𝜀-DP in the Edge-DP model.

Lower Bound for Weight-DP

Unit weight assumption:
q We can’t afford “significant changes” on important edges.
q Perspective from DP: neighboring graphs differ at an atomic level.
q Not a trivialization: input perturbation or output perturbation ❌

q Adding noise may change the sparsity a lot!

Private algorithm for  balanced sparsest cut:
• Add 𝑂(log 𝑛/𝜀) to all edge weights.
• Add independent Lap(1/𝜀) to all edge weights (input perturbation).
• Run algorithm A-1 on the perturbed graph and return the cut.
Recursively call the above algorithm, we get private algorithm for HC.

Analysis:

ü Privacy: Achieved by Input perturbation with Laplace mechanism.

ü Utility: 𝑂 log..1 𝑛 multiplicative error for HC has two sources:

a) 𝑂( log 𝑛)-approximation from algorithm A1 for sparsest cut.
b) 𝑂(log 𝑛)-approximation due to the Laplace noise.

Private Algorithm

What is the “correct” notion of privacy for 
hierarchical clustering?

Ø Dasgupta’s Cost: an objective to capture the “quality” of the clustering.

cost" 𝑇 = F
(2,3) ∈5

𝑤23 H |leaves(𝑇[𝑖 ∨ 𝑗])|

𝑇[𝑖 ∨ 𝑗] is the subtree rooted on the lowest common ancestor of 𝑖, 𝑗

Ø Cost of the above example:

cost" 𝑇 = 1×6 + 3×4 + 3×2
Ø [Das’15, CC’16]: Finding the clustering with minimum cost is NP-hard.

However, it can be approximated using sparsest cut in polynomial time.

Comparing the Dasgupta’s Cost:
• For well-clustered graphs, our algorithm performs close to non-private.
• For all graphs, our algorithm performs better than input perturbation.
Our algorithm scales well to large graphs.

Open Problem
1. Any approximate-DP algorithm for this model?
2. More applications of the DP sparsest cut algorithm?
3. Long shot: Hierarchical Agglomerative Clustering?

The hierarchical clustering output
can be represented by a tree

• Vertex: data point
• Edge weight: pair-wise similarity

Main Results
1. The Ω 𝑛//𝜀 lower bound even holds for weight-DP model.

2. However, with one assumption that all weights are at least 1,  we can 

achieve 𝑂(log..1 𝑛)-approximation in poly-time.

3. First algorithm with reasonable implementations for general graphs.

Main argument:
• To minimize Dasgupta’s cost, the algorithm should always partition 

disconnected components first.
• Any private algorithm will have to cut cycle edges early.

Add Lap(1/𝜀) to each edge, weight, 
then compute the sparsest cut

Compute all cuts, then add Lap(𝜙!/𝜀)
to each and output the sparsest cut

Amplify the gap between 
sparse and non-sparse cuts


