Differentially Private Multi-Sampling from Distributions
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Euclidean-Laplace Distribution

A Probability distribution which is a generalization of Laplace
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Input : n samples from a distribution P from a class C
Output : Privately generate m independent samples from Q = P
Private Single-Sampling : Special case m = 1 [RSSS21]

Measure of Accuracy: Total Variation Distance
 a-Sampling : Ensure HP = QI‘TV < a (whenm = 1)
* Weak (m, a)-Sampling : Ensure HP — QI‘TV < a

* Strong (m, a)-Sampling : Ensure “P@m — Q®m|| s a

distribution to d-dimensional space.
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Euclidean-Laplace Mechanism
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Baseline Techniques
Weak to Strong Multi Sampling

Running m instances of a DP single
sampler on m independent datasets is a
DP weak multi-sampler

Weak to Strong Multi Sampling
“P QHTV S a =
|p&™ — Q®™|| 1, < a

k-ary Randomized Response
Input : x € | k]
Output x with probability

exp(€,)
exp(e,)+k—1

Parameter: ¢, > 0

Foreveryc € [k] \ {x}, I
output ¢ with probability
1 [k}

exp(e,)+k—1
Sample Complexity of Private Multi-Sampling

Distributions on | k]| Approximate DP
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For all B, €, the Euclidean-Laplace satisfies e-DP

Pure-DP Gaussian Sampler for N (< R, I)
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Sample Complexity of Private Multi-Sampling
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Subsampled Randomized Response
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Shuffled Randomized Response
Shuffle step
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Privacy amplification through shuffling [FMT21]
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Lower Bound on Strong Multi-Sampling

Theorem [K24] : For two probability distributions P , O over
finite sets, we have

|P®™ —@®™|| = c-ym-IP—=Qllyy

P = Qllzy = a = ||P®™ — Q®""’HTV >c-ym -«
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