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Input : 𝑛 samples from a distribution 𝑃 from a class 𝐶
Output : Privately generate 𝑚 independent samples from 𝑄 ≈ 𝑃
Private Single-Sampling : Special case 𝑚 = 1 [RSSS21]
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Measure of Accuracy: Total Variation Distance
• 𝜶-Sampling : Ensure 𝑃 − 𝑄 𝑇𝑉 ≤ 	𝛼    (when 𝑚 = 1) 
• Weak (𝒎, 𝜶)-Sampling : Ensure 𝑃 − 𝑄 𝑇𝑉 ≤ 	𝛼
• Strong (𝒎, 𝜶)-Sampling : Ensure 𝑃⊗" − 𝑄⊗"

𝑇𝑉 ≤ 	𝛼

Distributions on [𝒌] Pure DP Approximate DP
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Sample Complexity of Private Multi-Sampling

Baseline Techniques
Weak to Strong Multi Sampling
Running 𝑚	instances of a DP single 
sampler on 𝑚 independent datasets is a 
DP weak multi-sampler

… …

Subsampled Randomized Response

…

Sample 𝑟  
uniformly 
from [𝑛]

𝑘-ary 
Randomized 

Response
𝜖0-DP

𝑥1

𝑥2

𝑥!

𝑥$

𝑦

Sample complexity    𝑛 = 𝑂 >
?@

Shuffled Randomized Response

…
𝑘-ary 

Randomized 
Response

𝜖0-DP

𝑥1

𝑥2

𝑥!

𝑦1

Sample complexity    𝑛 = 𝑂 𝑚 + >
?	ABC(@,@!)

log D
E

𝑘-ary 
Randomized 

Response

𝑘-ary 
Randomized 

Response

𝑧1
𝑧2

𝑧!
𝑦#

…

dnayak@bu.edu

𝒌-ary Randomized Response
Input : 𝑥 ∈ 𝑘  Parameter : 𝜖0 > 0

Output 𝑥	with probability
FGH(@!)

FGH @! I>JD

For every 𝑐 ∈ 𝑘 	∖ {𝑥}, 
output 𝑐 with probability
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Sample Complexity of Private Multi-Sampling

Lower Bound on Strong Multi-Sampling

𝑃 − 𝑄 #$ ≥ 𝛼 ⟹ 𝑃⊗" − 𝑄⊗"
#$ ≥ 𝑐 > 𝑚	 > 𝛼

Theorem [K24] : For two probability distributions 𝑃	, 𝑄	over 
finite sets, we have

𝑃⊗" − 𝑄⊗"
#$ ≥ 𝑐 > 𝑚 > 𝑃 − 𝑄 #$
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Shuffle step

Privacy amplification through shuffling [FMT21]
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Randomness of output includes
• Randomness of Input 𝑋	~	𝑃⊗%

• Coins of the DP sampling algorithm

Euclidean-Laplace Distribution

Pure-DP Gaussian Sampler for 𝓝(≤ 𝑹, 𝑰)

Euclidean-Laplace Mechanism

A Probability distribution which is a generalization of Laplace 
distribution to 𝑑-dimensional space.
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Input : 𝑥D, … , 𝑥P ∈ ℝQ , 𝑥R O ≤ 𝐵 for all 𝑖     Parameter : 𝜖, 𝐵
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For all 𝐵, 𝜖, the Euclidean-Laplace satisfies 𝜖-DP 
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Weak to Strong Multi Sampling
𝑃 − 𝑄 𝑇𝑉 ≤ 	𝛼	 ⇒ 

𝑃⊗# − 𝑄⊗#
𝑇𝑉 ≤ 𝛼𝑚


