Embedding Dimension of Contrastive Learning and k-Nearest Neighbors

Dmitrii Avdiukhin¹, Vaggos Chatziafratis, Orr Fischer³, Grigory Yaroslavtsev⁴

¹Northwestern University, ²UC Santa Cruz, ³Weizmann Institute of Science, ⁴George Mason University

OUR RESULT

CONTRASTIVE LEARNING

Consider a set of *m* non-contradictory constraints. There exists embedding into ℓ_p space satisfying all constraints if d is chosen as follows. $d \in \Theta(\sqrt{m})$ for p = 2• $O(\sqrt{m})$ always suffices, and some set of constraints require $\Omega(\sqrt{m})$ Neural Networks ★ $d \in O(m) \cap \Omega(\sqrt{m})$ for positive integer *p k*-NN For a positive integer p, there exists embedding into ℓ_p space of dimension $d = poly(k) \cdot polylog(n)$ preserving the k-nearest neighbors of each point. No polynomial dependence on n • Very surprising since k-NN information encodes $\Theta(n^2)$ constraints \clubsuit No dependence on pMAIN TECHNIQUES Intuition For $m = \Theta(n^2)$, have $d = \Theta(n)$ [Chatziafratis, Indyk`23] • Gives the $\Omega(\sqrt{m})$ lower bound If there are O(n) constraints: • If the constraints are spread over all n points, $d = \Theta(1)$ • If these constraints are concentrated on \sqrt{n} points, $d = \Theta(\sqrt{n})$. The density seems to matter **Constraint graph** Create edges for all constraints (contrastive learning) or points (k-NN) x with its nearest neighbors y_1, \dots, y_k (x, y^+, z^-) y_{1} y_1 y_k ν Z... Arboricity **Definition**: the minimum number of forests to cover the graph Measure of graph density K Æ High arboricity Low arboricity **Bounds on arboricity** • Clique has arboricity $\sqrt{m/2}$ • The $\sqrt{m/2}$ bound is tight

$$||f(x) - f(y)||^2 =$$

	C
	(