Matrix Completion and Generalization

Matrix Completion. Given a matrix $M \in \mathbb{R}^{n \times n}$, suppose we are only able to observe $W \circ M$ where \circ is the Hadamard product and $W \in \{0, 1\}^{n \times n}$. The goal is to recover the matrix M through observation $W \circ M$.

In many practical scenarios, it is natural to assume M has low-rank (rank-k), so the goal is to compute a rank-k matrix M such that

$$\|\widetilde{M} - M\|_F \le \epsilon$$

by observing $W \circ M$. Some additional assumptions have to be made in order for the problem to be approachable:

- Uniform sampling: we assume each entry of W follows an i.i.d. Bernoulli distribution with probability p;
- μ -incoherent: let $M = U\Sigma V^{\top}$ be its thin SVD, we assume $\max\{\|U_{i,*}\|_2^2, \|V_{i,*}\|_2^2\}_{i=1}^n \le \mu \cdot \frac{k}{n}.$

Weighted Low-Rank Approximation. In matrix completion, we assume the ground truth M can be directly observed in terms of entries, but in practice, one usually can only observe a noisy version of M, captured by M + N where N is a high-rank noise matrix.

In addition, when we know some entries are more important or some entries are noisy, we could use a tailored matrix W to facilitate the observation. Let $W \in \mathbb{R}^{n \times n}_{>0}$, the weighted low-rank approximation problem asks one to observe $W \circ (M + N)$ and then compute a rank-k M such that

 $||M - M||_F \le \delta \cdot ||W \circ N||_F + \epsilon.$

Alternating Minimization

A particularly popular practical algorithm for this type of problem is *alternating minimization*, which could be succinctly described as follows:

• $U_0, V_0 \leftarrow \text{SVD}(W \circ (M + N), k)$

• For $t = 1 \rightarrow T$

 $-U_t \leftarrow \operatorname{arg\,min}_{U \in \mathbb{R}^{n \times k}} \| W \circ (M + N) - W \circ (UV_{t-1}^{\top}) \|_F^2$

 $-V_t \leftarrow \arg\min_{V \in \mathbb{R}^{n \times k}} \|W \circ (M+N) - W \circ (U_t V^{\top})\|_F^2$

• Return $U_T V_T^+$

It has many pros and cons:

- < : Commonly used in practice, easy to implement
- \checkmark : U_t, V_t can be computed approximately and efficiently
- \times : Requires to observe more entries than SDP-based method;
- \times : Theoretical analysis requires U_t, V_t to be computed *exactly*: it needs $O(|W| \cdot k^2 \log(1/\epsilon))$ time in theory.

ALTERNATING MINIMIZATION FOR MATRIX COMPLETION AND BEYOND

Yuzhou Gu^{*}, Zhao Song[†], Mingquan Ye[‡], Junze Yin[§], Lichen Zhang[¶] * : NYU, \dagger : Simons Institute for the Theory of Computing, \ddagger : University of Illinois at Chicago, \S : Rice University, \P : MIT CSAIL

Close the Gap

While practically efficient, the theory of alternating minimization is lacking. Our main goal is to close the gap between theory and practice:

• We want to design an alternating minimization algorithm whose updates could be efficiently approximated;

• We want to show the algorithm converges under approximate updates. We achieve these two goals for both matrix completion and weighted low-rank approximation.

Theorem 1 (Gu, Song, Yin and Zhang, ICLR'24). *Given a rank-k matrix* $M \in \mathbb{R}^{n \times n}$ that is μ -incoherent, suppose $W \in \{0,1\}^{n \times n}$ with each entry being sampled with proper probability, there exists an alternating minimization algorithm that computes $M \in \mathbb{R}^{n \times n}$ such that $||M - M||_F \leq \epsilon$ for $\epsilon \in (0, 1)$, in $O(|W| \cdot k \log(1/\epsilon))$ time.

Theorem 2 (Song, Ye, Yin and Zhang, ICLR'25). *Given a rank-k matrix* $M \in \mathbb{R}^{n \times n}$ that is μ -incoherent, a noise matrix $N \in \mathbb{R}^{n \times n}$ and $W \in \mathbb{R}^{n \times n}_{>0}$ satisfying mild conditions, there exists an alternating minimization algorithm that computes $M \in \mathbb{R}^{n \times n}$ such that $||M - M|| \leq O(k\tau) \cdot ||W \circ N|| + \epsilon$ for $\epsilon \in (0,1)$ and τ is the condition number of M, in $O(|W| \cdot k \log(1/\epsilon))$ time. In essence, we develop error robust framework for alternating minimization that could tolerate approximate updates, and we develop efficient algorithm to compute approximate updates in $O(|W| \cdot k \log(1/\epsilon))$ time.

Algorithm: Sketch-and-Precondition

Sketch. To compute each update, note that if we let D_{W_i} to denote the diagonal matrix corresponds to the *i*-th column of W, compute each update is then solving n linear regressions in the form of $\min_{v \in \mathbb{R}^k} \|D_{W_i}(Uv - M_{*,i} - N_{*,i})\|_2^2$, and an efficient algorithmic approach is to apply a random *sketch* matrix: these matrices are structured random matrices that have much fewer rows than columns, can be applied efficiently, and preserve the cost of regression.

In particular, let OPT = $\min_{v \in \mathbb{R}^k} \|Uv - b\|_2^2$, the matrix S satisfies

- $\min_{v \in \mathbb{R}^k} \|S(Uv b)\|_2^2 \le (1 + \epsilon) \cdot \text{OPT};$
- S has $O(k/\epsilon^2)$ rows;

• S can be applied to U in $\tilde{O}(nk + \text{poly}(k, 1/\epsilon))$ time. While it is tempting to draw a sketch matrix S and use it to solve the regression, approximately preserving the cost is not enough for our application. In fact, we want a vector \tilde{v} such that $\|\tilde{v} - v_*\|_2$ is small where v_* is the optimal solution to the regression. This forces us to pick $\epsilon = 1/\operatorname{poly}(n, \tau)$, making the algorithm inefficient.

Algorothm: Sketch-and-Precondition

Precondition. To retain the efficiency of sketch-based approach for polynomially small ϵ , we instead use S as a preconditioner:

- Pick $\epsilon = 0.01$ for the sketch;
- Compute $SU = QR^{-1}$, the QR decomposition of SU;
- Use R as a preconditioner for the regression $\min_{v \in \mathbb{R}^k} \|Uv b\|_2^2$;
- gives a constant approximation;

Since we start with a good initial point with a good preconditioner, the gradient descent converges in $\log(1/\epsilon)$ iterations. Moreover, each iteration could be implemented in O(nk) time. Put it together, we show how to solve one regression in $O(nk \log(1/\epsilon))$ time. By further leveraging the sparsity pattern of W, we could improve the runtime for n regressions to $O(|W| \cdot k \log(1/\epsilon))$.

Convergence: Perturb the Incoherence

To prove the algorithm converges, we first examine the approach for exact updates. Let U_*, V_* be the optimal rank-k factors for M, and let U_t, V_t be the exact updates for iteration t. The proof follows by

- Show that the initial distances $dist(U_0, U_*), dist(V_0, V_*)$ are bounded; Inductively:
- -Assume dist (V_{t-1}, V_*) is small and V_{t-1} is μ -incoherent;
- -Similarly, given $dist(U_t, U_*)$ is small and U_t is μ -incoherent;
- -Prove dist $(V_t, V_*) \leq 1/4 \cdot dist(V_{t-1}, V_*)$ and V_t is μ -incoherent.

Since the distance shrinks by a constant factor at each iteration, it converges to ϵ -additive error in $\log(1/\epsilon)$ iterations. Since we instead compute approximate updates denoted by U_t, V_t with the guarantees $||U_t - U_t||, ||V_t - V_t||$ are small, we could use a similar approach to bound the distance (triangle inequality essentially). However, it is difficult to bound the incoherence of U_t, V_t , as the exact updates have closed-form solutions that are much easier to analyze. To circumvent this challenge, we develop a novel perturbation theory for incoherence: given $||U_t - U_t||$ is small, we show the incoherence of U_t can be bounded by a factor of the incoherence of U_t . To do so, we note:

Since this also provides a perturbation theory for statistical leverage score, we hope it finds more applications.

We close the gap between theory and practice for alternating minimization, by providing nearly-linear time algorithms for matrix completion and weighted low-rank approximation, and a robust analytical framework to allow approximate updates in place of their exact counterpart. We also have experiments on moderate-sized matrices, and we show a 10%-20% speedup over the algorithm with exact updates.

• Compute an initial point v_0 by solving $\min_{v \in \mathbb{R}^k} \|SUv - Sb\|_2^2$, note that this

• Use gradient descent to solve $\min_{v \in \mathbb{R}^k} \|URv - b\|_2^2$; with initial point v_0 .

-Prove dist $(U_t, U_*) \leq 1/4 \cdot dist(U_{t-1}, U_*)$ and U_t is μ -incoherent;

• The row norms of SVD factors of a matrix M could alternatively be rewritten as $\|(M^{\top}M)^{\dagger/2}M_{i,*}\|_2^2$, which are the statistical leverage scores of M;

• We could obtain a bound on the discrepancy between pseudo-inverses using known tools, and necessary ingredients are provided by the induction.

Conclusion