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Matrix Completion and Generalization

Matrix Completion. Given a matrix M € R"*", suppose we are only able to
observe W o M where o is the Hadamard product and W < {0, 1}"*". The goal
IS to recover the matrix M through observation W o M.

In many practical scenarios, it is natural to assume M has low-rank (rank-k),
so the goal is to compute a rank-£ matrix M such that

| M — Ml|p <

by observing W o M. Some additional assumptions have to be made in order

for the problem to be approachable:

* Uniform sampling: we assume each entry of 11/ follows an i.i.d. Bernoulli
distribution with probability p;

* u-incoherent:  let M = UXV' be its thin SVD, we assume
maxc{[|Us 13, | Vial By < pe- L.

Weighted Low-Rank Approximation. In matrix completion, we assume the
ground truth M can be directly observed in terms of entries, but in practice,
one usually can only observe a noisy version of M, captured by M + N where
N is a high-rank noise matrix.

In addition, when we know some entries are more important or some entries
are noisy, we could use a tailored matrix W to facilitate the observation. Let
W e RL", the weighted low-rank approximation problem asks one to observe

W o (M + N) and then compute a rank-k M such that
IM — M||p<8-||WoN|p+e.

Alternating Minimization

A particularly popular practical algorithm for this type of problem is alternating
minimization, which could be succinctly described as follows:

Uy, Vo < SVD(W o (M + N), k)
cFort=1—1T

—U; < arg ming cgox

Wo(M+N)—Wo(UVL)|;
Wo(M+ N) —Wo(UtVT)H%

— Vi «— arg miny cgaxi
- Return U7V,
It has many pros and cons:
« v/ : Commonly used in practice, easy to implement
v : U;, V; can be computed approximately and efficiently
» X: Requires to observe more entries than SDP-based method;

« X: Theoretical analysis requires U;, V; to be computed exactly: it needs
O(|W| - k*log(1/¢)) time in theory.

Close the Gap

While practically efficient, the theory of alternating minimization is lacking. Our
main goal is to close the gap between theory and practice:

* We want to design an alternating minimization algorithm whose updates
could be efficiently approximated;

* We want to show the algorithm converges under approximate updates.

We achieve these two goals for both matrix completion and weighted low-rank
approximation.

Theorem 1 (Gu, Song, Yin and Zhang, ICLR24). Given a rank-k matrix
M e R" " that is ji-incoherent, suppose W € {0, 1}"*" with each entry being
sampled with proper probability, there exists an alternating minimization algo-
rithm that computes M € R"*" such that |M — M|r < € fore € (0,1), in
O(|W| - klog(1/e)) time.

Theorem 2 (Song, Ye, Yin and Zhang, ICLR’25). Given a rank-k matrix
M e R"™" that is u-incoherent, a noise matrix N € R™" and W & RL;"
satisfying mild conditions, there exists an alternating minimization algoritfim
that computes M € R"™ " such that ||M — M| < O(kT) - ||[W o N|| + € for
e € (0,1) and 7 is the condition number of M, in O(|W | - klog(1/e)) time.

In essence, we develop error robust framework for alternating minimization
that could tolerate approximate updates, and we develop efficient algorithm to
compute approximate updates in O(|W| - klog(1/¢)) time.

Algorithm: Sketch-and-Precondition

Sketch. To compute each update, note that if we let Dy to denote the diago-
nal matrix corresponds to the -th column of 11/, compute each update is then
solving n linear regressions in the form of min,cp: || Dw,(Uv — M,; — N,;)||5,
and an efficient algorithmic approach is to apply a random sketch matrix:
these matrices are structured random matrices that have much fewer rows

than columns, can be applied efficiently, and preserve the cost of regression.

—

In particular, let OPT = min, g+ ||[Uv — bl|5, the matrix S satisfies

e min,cpe || S(Uv — b)||5 < (1 +¢) - OPT;

- S has O(k/€2) rows;

- S can be applied to U in O(nk + poly(k,1/€)) time.
While it is tempting to draw a sketch matrix .S and use it to solve the regression,
approximately preserving the cost is not enough for our application. In fact, we
want a vector v such that ||v — v,||> is small where v, is the optimal solution to

the regression. This forces us to pick ¢ = 1/ poly(n, 7), making the algorithm
inefficient.

Algorothm: Sketch-and-Precondition

Precondition. To retain the efficiency of sketch-based approach for polyno-
mially small ¢, we instead use S as a preconditioner:

* Pick e = 0.01 for the sketch;
« Compute SU = QR !, the QR decomposition of SU;

- Use R as a preconditioner for the regression min, e+ ||[Uv — bl|5

23
2, note that this

« Compute an initial point vy by solving min,cps || SUv — Sb
gives a constant approximation;

- Use gradient descent to solve min,cg: ||URv — b||3; with initial point vy.

Since we start with a good initial point with a good preconditioner, the gradient
descent converges in log(1/¢) iterations. Moreover, each iteration could be
implemented in O(nk) time. Put it together, we show how to solve one regres-
sion in O(nklog(1/¢)) time. By further leveraging the sparsity pattern of 17/,
we could improve the runtime for n regressions to O(|W/| - klog(1/e)).

Convergence: Perturb the Incoherence

To prove the algorithm converges, we first examine the approach for exact
updates. Let U.,, V. be the optimal rank-k factors for M, and let U, V; be the
exact updates for iteration t. The proof follows by

« Show that the initial distances dist(Uy, U,), dist(V4, Vi) are bounded;
* Inductively:
—Assume dist(V;_1, V4) is small and V;_; is u-incoherent;
—Prove dist(U;, U,) < 1/4 - dist(U; 1, U,) and Uy is p-incoherent;
— Similarly, given dist(U;, U,) is small and U; is u-incoherent;
—Prove dist(V;, V,) < 1/4 - dist(V;_1, Vi) and V; is p-incoherent.

Since the distance shrinks by a constant factor at each iteration, it converges
to e-additive error in log(1/¢) iterations. Since we instead compute approxi-
mate updates denoted by U,, V; with the guarantees ||U; — Uy||, ||V; — V;|| are
small, we could use a similar approach to bound the distance (triangle inequal-
ity essentially). However, it is difficult to bound the incoherence of U;, V;, as
the exact updates have closed-form solutions that are much easier to analyze.
To circumvent this challenge, we develop a novel perturbation theory for in-
coherence: given ||U; — Uy|| is small, we show the incoherence of U; can be
bounded by a factor of the incoherence of U,;. To do so, we note:

* The row norms of SVD factors of a matrix M could alternatively be rewritten
as ||(M " M)"2M,;_||3, which are the statistical leverage scores of M

* We could obtain a bound on the discrepancy between pseudo-inverses us-
iIng known tools, and necessary ingredients are provided by the induction.

Since this also provides a perturbation theory for statistical leverage score, we
hope it finds more applications.

Conclusion

We close the gap between theory and practice for alternating minimization,
by providing nearly-linear time algorithms for matrix completion and weighted
low-rank approximation, and a robust analytical framework to allow approxi-
mate updates in place of their exact counterpart. We also have experiments
on moderate-sized matrices, and we show a 10%-20% speedup over the al-
gorithm with exact updates.



