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Matrix Completion and Generalization

Matrix Completion. Given a matrix M ∈ Rn×n, suppose we are only able to
observe W ◦M where ◦ is the Hadamard product and W ∈ {0, 1}n×n. The goal
is to recover the matrix M through observation W ◦M .

In many practical scenarios, it is natural to assume M has low-rank (rank-k),
so the goal is to compute a rank-k matrix M̃ such that

∥M̃ −M∥F ≤ ϵ

by observing W ◦M . Some additional assumptions have to be made in order
for the problem to be approachable:
• Uniform sampling: we assume each entry of W follows an i.i.d. Bernoulli
distribution with probability p;

•µ-incoherent: let M = UΣV ⊤ be its thin SVD, we assume
max{∥Ui,∗∥22, ∥Vi,∗∥22}ni=1 ≤ µ · kn.

Weighted Low-Rank Approximation. In matrix completion, we assume the
ground truth M can be directly observed in terms of entries, but in practice,
one usually can only observe a noisy version of M , captured by M +N where
N is a high-rank noise matrix.
In addition, when we know some entries are more important or some entries
are noisy, we could use a tailored matrix W to facilitate the observation. Let
W ∈ Rn×n

≥0 , the weighted low-rank approximation problem asks one to observe
W ◦ (M +N) and then compute a rank-k M̃ such that

∥M̃ −M∥F ≤ δ · ∥W ◦N∥F + ϵ.

Alternating Minimization

A particularly popular practical algorithm for this type of problem is alternating
minimization, which could be succinctly described as follows:

•U0, V0← SVD(W ◦ (M +N), k)

• For t = 1→ T

–Ut← argminU∈Rn×k ∥W ◦ (M +N)−W ◦ (UV ⊤t−1)∥2F
–Vt← argminV ∈Rn×k ∥W ◦ (M +N)−W ◦ (UtV

⊤)∥2F
• Return UTV

⊤
T

It has many pros and cons:

•✓✓✓: Commonly used in practice, easy to implement

•✓✓✓: Ut, Vt can be computed approximately and efficiently

•×××: Requires to observe more entries than SDP-based method;

•×××: Theoretical analysis requires Ut, Vt to be computed exactly : it needs
O(|W | · k2 log(1/ϵ)) time in theory.

Close the Gap

While practically efficient, the theory of alternating minimization is lacking. Our
main goal is to close the gap between theory and practice:

• We want to design an alternating minimization algorithm whose updates
could be efficiently approximated;

• We want to show the algorithm converges under approximate updates.

We achieve these two goals for both matrix completion and weighted low-rank
approximation.

Theorem 1 (Gu, Song, Yin and Zhang, ICLR’24). Given a rank-k matrix
M ∈ Rn×n that is µ-incoherent, suppose W ∈ {0, 1}n×n with each entry being
sampled with proper probability, there exists an alternating minimization algo-
rithm that computes M̃ ∈ Rn×n such that ∥M̃ − M∥F ≤ ϵ for ϵ ∈ (0, 1), in
Õ(|W | · k log(1/ϵ)) time.

Theorem 2 (Song, Ye, Yin and Zhang, ICLR’25). Given a rank-k matrix
M ∈ Rn×n that is µ-incoherent, a noise matrix N ∈ Rn×n and W ∈ Rn×n

≥0
satisfying mild conditions, there exists an alternating minimization algorithm
that computes M̃ ∈ Rn×n such that ∥M̃ − M∥ ≤ O(kτ ) · ∥W ◦ N∥ + ϵ for
ϵ ∈ (0, 1) and τ is the condition number of M , in Õ(|W | · k log(1/ϵ)) time.

In essence, we develop error robust framework for alternating minimization
that could tolerate approximate updates, and we develop efficient algorithm to
compute approximate updates in Õ(|W | · k log(1/ϵ)) time.

Algorithm: Sketch-and-Precondition

Sketch. To compute each update, note that if we let DWi
to denote the diago-

nal matrix corresponds to the i-th column of W , compute each update is then
solving n linear regressions in the form of minv∈Rk ∥DWi

(Uv −M∗,i − N∗,i)∥22,
and an efficient algorithmic approach is to apply a random sketch matrix:
these matrices are structured random matrices that have much fewer rows
than columns, can be applied efficiently, and preserve the cost of regression.

In particular, let OPT = minv∈Rk ∥Uv − b∥22, the matrix S satisfies

•minv∈Rk ∥S(Uv − b)∥22 ≤ (1 + ϵ) · OPT;

•S has Õ(k/ϵ2) rows;

•S can be applied to U in Õ(nk + poly(k, 1/ϵ)) time.

While it is tempting to draw a sketch matrix S and use it to solve the regression,
approximately preserving the cost is not enough for our application. In fact, we
want a vector ṽ such that ∥ṽ − v∗∥2 is small where v∗ is the optimal solution to
the regression. This forces us to pick ϵ = 1/ poly(n, τ ), making the algorithm
inefficient.

Algorothm: Sketch-and-Precondition

Precondition. To retain the efficiency of sketch-based approach for polyno-
mially small ϵ, we instead use S as a preconditioner :

• Pick ϵ = 0.01 for the sketch;

• Compute SU = QR−1, the QR decomposition of SU ;

• Use R as a preconditioner for the regression minv∈Rk ∥Uv − b∥22;
• Compute an initial point v0 by solving minv∈Rk ∥SUv − Sb∥22, note that this
gives a constant approximation;

• Use gradient descent to solve minv∈Rk ∥URv − b∥22; with initial point v0.

Since we start with a good initial point with a good preconditioner, the gradient
descent converges in log(1/ϵ) iterations. Moreover, each iteration could be
implemented in Õ(nk) time. Put it together, we show how to solve one regres-
sion in Õ(nk log(1/ϵ)) time. By further leveraging the sparsity pattern of W ,
we could improve the runtime for n regressions to Õ(|W | · k log(1/ϵ)).

Convergence: Perturb the Incoherence

To prove the algorithm converges, we first examine the approach for exact
updates. Let U∗, V∗ be the optimal rank-k factors for M , and let Ut, Vt be the
exact updates for iteration t. The proof follows by

• Show that the initial distances dist(U0, U∗), dist(V0, V∗) are bounded;

• Inductively:

– Assume dist(Vt−1, V∗) is small and Vt−1 is µ-incoherent;
– Prove dist(Ut, U∗) ≤ 1/4 · dist(Ut−1, U∗) and Ut is µ-incoherent;
– Similarly, given dist(Ut, U∗) is small and Ut is µ-incoherent;
– Prove dist(Vt, V∗) ≤ 1/4 · dist(Vt−1, V∗) and Vt is µ-incoherent.

Since the distance shrinks by a constant factor at each iteration, it converges
to ϵ-additive error in log(1/ϵ) iterations. Since we instead compute approxi-
mate updates denoted by Ũt, Ṽt with the guarantees ∥Ũt − Ut∥, ∥Ṽt − Vt∥ are
small, we could use a similar approach to bound the distance (triangle inequal-
ity essentially). However, it is difficult to bound the incoherence of Ũt, Ṽt, as
the exact updates have closed-form solutions that are much easier to analyze.
To circumvent this challenge, we develop a novel perturbation theory for in-
coherence: given ∥Ũt − Ut∥ is small, we show the incoherence of Ũt can be
bounded by a factor of the incoherence of Ut. To do so, we note:

• The row norms of SVD factors of a matrix M could alternatively be rewritten
as ∥(M⊤M)†/2Mi,∗∥22, which are the statistical leverage scores of M ;

• We could obtain a bound on the discrepancy between pseudo-inverses us-
ing known tools, and necessary ingredients are provided by the induction.

Since this also provides a perturbation theory for statistical leverage score, we
hope it finds more applications.

Conclusion

We close the gap between theory and practice for alternating minimization,
by providing nearly-linear time algorithms for matrix completion and weighted
low-rank approximation, and a robust analytical framework to allow approxi-
mate updates in place of their exact counterpart. We also have experiments
on moderate-sized matrices, and we show a 10%-20% speedup over the al-
gorithm with exact updates.


