
Learning-Augmentation for Online Convex Covering and Concave Packing
Maoyuan ’Raymond’ Song

Computer Science Department, Purdue University

Online Covering and Packing Linear Programs

We consider the following primal covering minimization problem:
min cTx over x ∈ Rn

≥0 subject to Ax ≥ 1 (1)
and the corresponding dual packing maximization problem:

max 1Ty over y ∈ Rm
≥0 subject to ATy ≤ c (2)

where:
•A ∈ Rm×n

≥0 is the constraint matrix;
•1 is the vector of all ones;
• c ∈ Rn

>0 is the linear coefficients of the cost function.
In the online setting, the rows of the constraint matrix A arrives online,
and the algorithm must update x or y in a non-decreasing manner.

Primal-Dual Learning-Augmented (PDLA)
Algorithms for Online Covering

We adapt and extend the primal-dual method to incorporate learning-
augmentation and advices.
•The algorithm is given an advice x′ ∈ Rn

≥0, suggesting a solution to
LP (1).
•The user chooses a confidence parameter λ ∈ [0, 1] that controls

the desired consistency-robustness tradeoff.

Performance Measures

•Consistency: The ratio between the value of the algorithm’s
solution and the value of the advice.
•Robustness: The ratio between the value of the algorithm’s

solution and the value of optimal offline solution.

Our PDLA algorithm solves the primal and the dual simultaneously.
Whenever constraint i ∈ [n] arrives online:
• Increase yi with growth rate 1;
• Increase xj with growth rate

Aij

cj

xj + λ

Ai1
+

(1− λ)x′j1xj<x′j

Aix′c

where x′c is the advice x′ restricted to entries j where xj < x′j holds.

Theorem 1. Our algorithm is O(1
1−λ)-consistent, O(log κn

λ)-robust,
where κ is the condition number of A.

Simple Switching Strategies

Private communication with Roie Levin pointed out that the following
algorithm beats our PDLA algorithms for all choices of λ.

Switching Algorithm for Online Covering

Input: problem instance A, c, advice x′, online algorithm O;
Output: solution x.
When constraint i arrives:

Run O for round i to obtain x(i).
if cTx′ ≥ cTx(i) then x← x(i).
else for j ∈ [n] do

xj ← max{x′j, x
(i−1)
j }.

Follow-up work devised another similar algorithm based on simple
switching ideas for online packing, and can be extended to concave
objective functions.

Switching Algorithm for Online Packing

Input: problem instance AT , c, advice y′, online algorithm O;
Output: solution y.
When column i arrives:

Run O for round i to obtain yOi .
if ATy′ ≤ c then yi← 1

2(y
′
i + yOi).

else yi← yOi .

Theorem 2. The switching algorithm for online covering LPs
and the switching algorithm for online (concave) packing are both
2-consistent and 2α-robust, where α is the competitiveness of O.

Important Conceptual Questions

•What structural properties enable switching strategies?
•Characterizing space of problems that allows black-boxes?
•The fundamental power of learning-augmentation?

PDLA Algorithms for Online Convex Covering

We study online covering with convex objectives:

min f (x) over x ∈ Rn
≥0 subject to Ax ≥ 1 (3)

where f : Rn
≥0 7→ R≥0 is monotone, convex, and differentiable.

We also assume:
• f (0) = 0, and ∇f is monotone;
•d is the row sparsity of A;
•There exists some p := supx

⟨x,∇f (x)⟩
f (x) .

Here, the switching strategy do not work!
•The objective f (x) is not necessarily sub-additive.
•Additional cost of switching between solutions is unbounded.

PDLA Algorithm for Online Convex Covering

Input: problem instance A, c, advice x′, confidence parameter λ;
Output: solution x.
When constraint i arrives:

while Aix ≤ 1 do
for j ∈ [n] do

Increment xj at rate
aij

∇jf (x)

xj + λ

Aijd
+

(1− λ)x′1xj<x′j

Aix′c

Increment yi at rate (for some δ chosen later)

r := δ

log(1 + 2
λd2)

for each j ∈ [n] s.t. dual constraint j is tight do
m∗j ← arg maxi

t=1{Atj|yt > 0}.
Decrease ym∗j at rate Aij

A(m∗j)j
· r.

Theorem 3. Our PDLA algorithm is O(1
1−λ)-consistent, and

O((p log d
λ)p)-robust, matching prior work up to the confidence pa-

rameter δ, and improves upon Theorem 1 when f is linear.

Contact Information

•Email: MaoyuanRS@gmail.com
•Webpage: maoyuans.github.io
•Twitter: @maoyuans

