Learning-Augmentation for Online Convex Covering and Concave Packing

Online Covering and Packing Linear Programs

We consider the following primal covering minimization $\min c^T x$ over $x \in \mathbb{R}^n_{>0}$ subject to $Ax \geq 1$

and the corresponding dual packing maximization prob $\max \mathbf{1}^T y$ over $y \in \mathbb{R}^m_{>0}$ subject to $A^T y \leq \mathbf{1}^T y$

where:

- $A \in \mathbb{R}_{>0}^{m \times n}$ is the constraint matrix;
- 1 is the vector of all ones;
- $c \in \mathbb{R}^n_{>0}$ is the linear coefficients of the cost function.

In the online setting, the rows of the constraint matrix A arrives online, and the algorithm must update x or y in a non-decreasing manner.

Primal-Dual Learning-Augmented (PDLA) **Algorithms for Online Covering**

We adapt and extend the *primal-dual method* to incorporate learningaugmentation and advices.

- The algorithm is given an *advice* $x' \in \mathbb{R}^n_{>0}$, suggesting a solution to LP (1).
- The user chooses a *confidence parameter* $\lambda \in [0, 1]$ that controls the desired consistency-robustness tradeoff.

Performance Measures

- **Consistency**: The ratio between the value of the algorithm's solution and the value of the advice.
- **Robustness**: The ratio between the value of the algorithm's solution and the value of optimal offline solution.

Our PDLA algorithm solves the primal and the dual simultaneously. Whenever constraint $i \in [n]$ arrives online:

- Increase y_i with growth rate 1;
- Increase x_i with growth rate

$$\frac{A_{ij}}{c_j} \left(x_j + \frac{\lambda}{A_i \mathbf{1}} + \frac{(1-\lambda)x'_j \mathbf{1}_{x_j < x'_j}}{A_i x'_c} \right)$$

where x'_c is the advice x' restricted to entries j where $x_j < x'_j$ holds. **Theorem 1.** Our algorithm is $O(\frac{1}{1-\lambda})$ -consistent, $O(\log \frac{\kappa n}{\lambda})$ -robust, where κ is the condition number of A.

Maoyuan 'Raymond' Song Computer Science Department, Purdue University

n problem:	
1	(1)
olem:	
\mathcal{C}	(2)

Simple Switching Strategies

Private communication with Roie Levin pointed out that the following algorithm beats our PDLA algorithms for all choices of λ .

Switching Algorithm for Online Covering

Input: problem instance A, c, advice x', online algorithm \mathcal{O} ; **Output:** solution x. When constraint i arrives: Run \mathcal{O} for round *i* to obtain $x^{(i)}$. if $c^T x' \ge c^T x^{(i)}$ then $x \leftarrow x^{(i)}$. else for $j \in [n]$ do $x_j \leftarrow \max\{x'_j, x_j^{(i-1)}\}.$

Follow-up work devised another similar algorithm based on simple switching ideas for online packing, and can be extended to concave objective functions.

Switching Algorithm for Online Packing

Input: problem instance A^T, c , advice y', online algorithm \mathcal{O} ; **Output:** solution y. When column i arrives: Run \mathcal{O} for round *i* to obtain $y_i^{\mathcal{O}}$. if $A^T y' \leq c$ then $y_i \leftarrow \frac{1}{2}(y'_i + y_i^{\mathcal{O}})$. else $y_i \leftarrow y_i^{\mathcal{O}}$.

Theorem 2. The switching algorithm for online covering LPs and the switching algorithm for online (concave) packing are both 2-consistent and 2α -robust, where α is the competitiveness of \mathcal{O} .

Important Conceptual Questions

- What structural properties enable switching strategies?
- Characterizing space of problems that allows black-boxes?
- The fundamental power of learning-augmentation?

PDLA Algorithms for Online Convex Covering

We study online covering with convex objectives:

(3)

 $\min f(x)$ over $x \in \mathbb{R}^n_{>0}$ subject to $Ax \ge \mathbf{1}$ where $f : \mathbb{R}_{>0}^n \mapsto \mathbb{R}_{\geq 0}$ is monotone, convex, and differentiable. We also assume:

• f(0) = 0, and ∇f is monotone;

• d is the row sparsity of A;

• There exists some $p := \sup_x \frac{\langle x, \nabla f(x) \rangle}{f(x)}$.

Here, the switching strategy **do not work**!

Output: solution x. When constraint i arrives: while $A_i x \leq 1$ do for $j \in [n]$ do

Theorem 3. Our PDLA algorithm is $O(\frac{1}{1-\lambda})$ -consistent, and $O((p \log \frac{d}{\lambda})^p)$ -robust, matching prior work up to the confidence parameter δ , and improves upon Theorem 1 when f is linear.

- Email: MaoyuanRS@gmail.com
- Webpage: maoyuans.github.io
- Twitter: @maoyuans

• The objective f(x) is not necessarily sub-additive. • Additional cost of switching between solutions is unbounded.

PDLA Algorithm for Online Convex Covering

Input: problem instance A, c, advice x', confidence parameter λ ; Increment x_i at rate $\frac{a_{ij}}{\nabla_j f(x)} \left(x_j + \frac{\lambda}{A_{ij}d} + \frac{(1-\lambda)x' \mathbf{1}_{x_j < x'_j}}{A_i x'_c} \right)$ Increment y_i at rate (for some δ chosen later) $r := \frac{1}{\log(1 + \frac{2}{\lambda}d^2)}$ for each $j \in [n]$ s.t. dual constraint j is tight **do** $m_j^* \leftarrow \arg \max_{t=1}^i \{A_{tj} | y_t > 0\}.$ Decrease $y_{m_j^*}$ at rate $\frac{A_{ij}}{A_{(m^*)i}} \cdot r$.

Contact Information

