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Prior Works by [BBCR’10] and [Yu’22]

Our Approach
Theorem: For any function 𝑓: 𝑋 × 𝑌 ⟶ {0,1} and 

positive integer 𝑛, we have:

Princeton University

Pachara Sawettamalya, Huacheng Yu

Strong XOR Lemma for Information Complexity

Two-Player Communication Model

Two player, Alice and Bob, holds a private input:

• Alice has 𝑥 ∈ 𝑋 and Bob has 𝑦 ∈ 𝑌 

• Players jointly compute 𝑓 𝑥, 𝑦 ∈ {0,1}

• This is done via exchanging a sequence of 

messages 𝑀; we call π = (𝑀, 𝑋, 𝑌) a protocol.

• Information cost of a protocol π = (𝑀, 𝑋, 𝑌) is

This measures amount of information which the 

protocol reveals about players’ inputs

• Information cost of a function 𝑓 w.r.t. error 𝛿 is

Main Results
Three major changes from [Yu’22]:

• Introduce new parameter “disadvantage” denoted

𝜀(𝜋) = 1 – adv 𝜋  as a proxy to error probability.

• Impose a conditioning event 𝑊 = (𝑍 > 0.01).

• “Binary” decomposition of protocols.

Barak, Braverman, Chen, and Rao (STOC’10) proved 

an XOR lemma for information in a regime of 𝜌 = 𝜌′.

Let 𝜋 be a protocol for computing 𝑓⊕𝑛 over input 

distribution 𝜇𝑛. The protocol 𝜋′ for computing 𝑓 is 

obtained by embedding inputs 𝑥, 𝑦  into a random 

index 𝑖, and publicly sampling 𝑋<𝑖𝑌>𝑖.

XOR Lemma for Information Complexity

Denote 𝑓⊕𝑛: 𝑋𝑛 × 𝑌𝑛 ⟶ 0,1 to be an 𝑛-folded 

XOR of 𝑓 such that:

Yu (FOCS’22) gave an alternative view of [BBCR’10] 

argument by iteratively splitting a protocol 𝜋 for 

computing 𝑓⊕𝑛 over input dist 𝜇𝑛 into two protocols:

𝜋(𝑛) computes 𝑓 over input distribution 𝜇

𝜋(<𝑛) computes 𝑓⊕𝑛−1over input distribution 𝜇𝑛−1

Lemma: 𝐼𝐶(𝜋(𝑛)) + 𝐼𝐶(𝜋(<𝑛)) = 𝐼𝐶 𝜋 + 𝑂 1 .

Lemma: There are RVs 𝐴, 𝐵, 𝑍 s.t. 𝑍 = 𝐴𝐵 and

Technical Challenges

• Assumption (*) is not always true. 

Fix: sample 𝑆 from a more complicated distribution.

• Conditioning induces arbitrary correlation between 

inputs and messages; thus, 𝜋𝑆 is no longer a protocol

Fix: each conditioning event occurs w.h.p.− thus the 

correlation is small in expectation. Keep track of this 

quantity and compensate it by an 𝑜𝑛(1) additive loss.

I 𝑓⊕𝑛 ,
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𝑎𝑑𝑣 𝜋 = 𝔼 𝑍 = 𝔼 𝐴𝐵𝑎𝑑𝑣 𝜋 𝑛 = 𝔼[𝐴]

𝑎𝑑𝑣 𝜋 <𝑛 = 𝔼[𝐵]

Staring with a protocol 𝜋 with 𝐼𝐶(𝜋) = 𝐼 and 

𝜀 𝜋 = 𝜀 ≈ Θ 1 . We decompose 𝜋 into 𝜋0 and 𝜋1 

both computing 𝑓⊕𝑛/2 over input distribution 𝜇𝑛/2.

Lemma: 𝐼𝐶(𝜋0) + 𝐼𝐶(𝜋1) ≤ exp(𝜀 𝜋 ) ∙ 𝐼𝐶(𝜋)
Lemma: 𝜀(𝜋0) + 𝜀(𝜋1) ≤ 1.98 ∙ 𝜀(𝜋)

Proof  Sketch of Main Theorem: Recursively apply the 

decomposition until level 𝑚 = log2 𝑛 where we get 𝑛 

protocols for 𝑓. Then, the sum of 𝜀’s at this level is:
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σ 𝑆 =𝑚 𝜀( 𝜋𝑆) ≤ 1.98𝑚 ∙ 𝜀 𝜋 < 𝑛0.99

(*) Assume the average case: 𝜀(𝜋𝑆) ≈ 0.99 𝑆 𝜀. Then,

σ 𝑆 =𝑚 𝐼𝐶(𝜋𝑆 ) ≤ 𝐼𝐶 𝜋 ∙ exp σ 0.99 𝑆 𝜀 = 𝑂 𝐼 .

So, on average 𝜋𝑆 has error 𝑛−0.01 and IC ≈ 𝐼/𝑛. ∎

𝐼𝐶 𝜋 = 𝐼 𝑀 ∶ 𝑋 𝑌 + 𝐼 𝑀 ∶ 𝑌 𝑋).

𝑓⊕𝑛 𝑥1𝑦1, … , 𝑥𝑛𝑦𝑛 ∶= 𝑓 𝑥1, 𝑦1 ⊕ ⋯ ⊕ 𝑓 𝑥𝑛, 𝑦𝑛

Naïve protocol for 𝑓⊕𝑛: compute each 𝑓 𝑥𝑖 , 𝑦𝑖  in 

parallel − this costs 𝑛 times the cost of computing 𝑓.

Strong XOR Lemma asks: For what notions of  

“cost” and error parameters 𝜌, 𝜌′  that the naïve 

protocol is optimal:

Cost 𝑓⊕𝑛, 𝜌′ ≥ Ω 𝑛 ⋅ Cost 𝑓, 𝜌 .

The error tradeoffs of 𝜌 vs. 𝜌′ is tight when 𝜌, 𝜌′ =
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 for some advantage 𝛼 ∈ [0,1]. When 

the “cost” is information:

• [BBCR’10] True for 𝜌, 𝜌′ =
2

3
,
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3
 but not optimal

• False for 𝜌, 𝜌′ =
2

3
,

1

2
+ 2−𝑛

• [This work] True for 𝜌, 𝜌′ = 1 − 𝑛−0.1,
2

3
 and 

asymptotically optimal

I 𝑓, 𝛿 = min
𝜋 computes 𝑓 w.p. 1−𝛿

𝐼𝐶 π
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