Strong XOR Lemma for Information Complexity Pachara Sawettamalya, Huacheng Yu Princeton University

Two-Player Communication Model

Two player, Alice and Bob, holds a private input:

- Alice has $x \in X$ and Bob has $y \in Y$
- Players jointly compute $f(x, y) \in \{0, 1\}$
- This is done via exchanging a sequence of messages M; we call $\pi = (M, X, Y)$ a protocol.
- Information cost of a protocol $\pi = (M, X, Y)$ is

$$IC(\pi) = I(M : X | Y) + I(M : Y | X)$$

This measures amount of information which the protocol reveals about players' inputs

• Information cost of a function f w.r.t. error δ is $I(f, \delta) = \min_{\substack{\pi \text{ computes } f \text{ w.p. } 1-\delta}} IC(\pi)$

XOR Lemma for Information Complexity

Denote $f^{\bigoplus n}: X^n \times Y^n \longrightarrow \{0,1\}$ to be an *n*-folded XOR of *f* such that:

 $f^{\oplus n}(x_1y_1, \dots, x_ny_n) := f(x_1, y_1) \oplus \dots \oplus f(x_n, y_n)$

Naïve protocol for $f^{\oplus n}$: compute each $f(x_i, y_i)$ in parallel – this costs n times the cost of computing f.

Strong XOR Lemma asks: For what notions of "cost" and error parameters (ρ , ρ') that the naïve protocol is optimal:

$$\operatorname{Cost}(f^{\oplus n}, \rho') \ge \Omega(n) \cdot \operatorname{Cost}(f, \rho)$$

The error tradeoffs of ρ vs. ρ' is tight when $(\rho, \rho') =$ $\left(\frac{1}{2} + \frac{\alpha}{2}, \frac{1}{2} + \frac{\alpha''}{2}\right)$ for some advantage $\alpha \in [0,1]$. When the "cost" is information:

- [BBCR'10] True for $(\rho, \rho') = \left(\frac{2}{3}, \frac{2}{3}\right)$ but not optimal
- False for $(\rho, \rho') = \left(\frac{2}{3}, \frac{1}{2} + 2^{-n}\right)$
- [This work] True for $(\rho, \rho') = (1 n^{-0.1}, \frac{2}{2})$ and asymptotically optimal

$\frac{1}{\operatorname{oly}(n)}\bigg) - o_n(1) - 1\bigg).$ inputs public samples private ysamples

positive integer *n*, we have:

$$I\left(f^{\bigoplus n}, \frac{1}{3}\right) \ge \Omega(n) \cdot \left(I\left(f, \frac{1}{pc}\right)\right)$$

Main Results Theorem: For any function $f: X \times Y \rightarrow \{0,1\}$ and Prior Works by [BBCR'10] and [Yu'22] Barak, Braverman, Chen, and Rao (STOC'10) proved an XOR lemma for information in a regime of $\rho = \rho'$. Let π be a protocol for computing $f^{\bigoplus n}$ over input distribution μ^n . The protocol π' for computing f is obtained by embedding inputs (x, y) into a random index *i*, and publicly sampling $X_{\langle i}Y_{\geq i}$.

Yu (FOCS'22) gave an alternative view of [BBCR'10] argument by iteratively splitting a protocol π for computing $f^{\oplus n}$ over input dist μ^n into two protocols: • $\pi^{(n)}$ computes f over input distribution μ

X).

Three major changes from [Yu'22]: • Introduce new parameter "disadvantage" denoted $\varepsilon(\pi) = 1 - adv(\pi)$ as a proxy to error probability. • Impose a conditioning event W = (Z > 0.01). • "Binary" decomposition of protocols.

<u>Proof Sketch of Main Theorem:</u> Recursively apply the decomposition until level $m = \log_2 n$ where we get n protocols for f. Then, the sum of ε 's at this level is:

 $\sum_{|S|=m} \varepsilon(\pi_S) \le 1.98^m \cdot \varepsilon(\pi) < n^{0.99}$ $\sum_{|S|=m} IC(\pi_S) \leq IC(\pi) \cdot \exp\left(\sum 0.99^{|S|}\varepsilon\right) = O(I).$

(*) Assume the *average case*: $\varepsilon(\pi_S) \approx 0.99^{|S|}\varepsilon$. Then, So, on average π_S has error $n^{-0.01}$ and IC $\approx I/n$.

- Assumption (*) is not always true.

Our Approach

Staring with a protocol π with $IC(\pi) = I$ and $\varepsilon(\pi) = \varepsilon \approx \Theta(1)$. We decompose π into π_0 and π_1 both computing $f^{\bigoplus n/2}$ over input distribution $\mu^{n/2}$.

Lemma: $IC(\pi_0) + IC(\pi_1) \le \exp(\varepsilon(\pi)) \cdot IC(\pi)$ Lemma: $\varepsilon(\pi_0) + \varepsilon(\pi_1) \le 1.98 \cdot \varepsilon(\pi)$

Technical Challenges

<u>Fix:</u> sample *S* from a more complicated distribution. Conditioning induces arbitrary correlation between inputs and messages; thus, π_S is no longer a protocol Fix: each conditioning event occurs w.h.p.- thus the correlation is small in expectation. Keep track of this quantity and compensate it by an $o_n(1)$ additive loss.