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- Two-Player Communication Model N[ Main Results N Our Approach h
Two player, Alice and Bob, holds a private input: Theorem: For any function f: X X Y — {0,1} and Three major changes from [Yu’22]:
» Alicehas x € X and Bobhasy € Y positive Integer n, we have:  Introduce new parameter “disadvantage” denoted
. =1-ad as a proxy to error probability.
 Players jointly compute f(x,y) € {0,1} I(f@",l> > Q) - (I (f, 1 ) o (1) — 1>. . f(ﬂ) a ;/(tﬂ) _ P tyW ! Zp 001)’
 This is done via exchanging a sequence of 3 poly(n) mpose a cond |on|hg cven = (£ > 0.01),
messages M; we call T = (M, X, Y) a protocol. * “Binary” decomposition ot protocols.

Prior Works by [BBCR'10] and [Yu'22 Staring with a protocol = with IC (ir) = I and

 Information cost of a protocol m = (M, X,Y) IS
e(m) = € = 0(1). We decompose m into m, and

_ : : Barak, Braverman, Chen, and Rao (STOC’10) proved _ _ S
[Cm) = 1M X 1Y) +1(M: ¥ | X), an XOR lemma for information in a regime of p = p'. both computing £ ™2 over input distribution p.™/2.
This measures amount of mfo[matlon which the et 7 be a protocol for computing £®™ over input Alice _
protocol reveals about players’ inputs L - , : :
_ _ _ distribution u™. The protocol r" for computing f Is T,
» Information cost of a function f w.r.t. error § is obtained by embedding inputs (x, y) into a random / s> N
I(f,05) . Computrgg? Wb 1-8 IC (1) iIndex i, and publicly sampling X_;Y5;. . nouts | h .
: - . public
XOR Lemma for Information Complexity Alice | camples Bob I
Denote f©™: X" x Y™ — {0,1} to be an n-folded private |
YOR offf such that t0,1] Bob samples Lemma: IC(mty) + IC () < exp(e(m)) - IC(m)
| Lemma: e(mty) + (mq) < 1.98 - g(m)
D . — Yu (FOCS’22 Iternat: ' f [ BBCR’10 . .
fOMX1Y1) oo Xn V) = f(x1,¥1) D - D [, yn) arlgl;L(Jment oy izegrzmslr; 2p|ei?tli?1g1;§ g;gtvg cool [n e | Proof Sketch of Main Theorem: Recursively apply the
Naive protocol for f©™: compute each f(x;, y;) in computing £ ™ over input dist 4™ into two protocols: decomposition until level m = log, n where we get n

protocols for f. Then, the sum of &’s at this level 1s:
Y isiem £(75) < 1.98™ - £(1) < n0°

parallel — this costs n times the cost of computing £ . (™ computes f over input distribution

Strong XOR Lemma asks: For what notions of Alice .
“cost” and error parameters (p, p") that the naive (*) Assume the average case: €(rg) =~ 0.99'5l¢. Then,
rotocol 1s optimal:
P P 5 Bob . Qisl=m IC (s ) < IC(7) - exp(Z O.99|S|e) = 0(1).
n I ° - - - -
Cost(f ¥, p") = Q(n) - Cost(f, p). o« 1(<™ computes £F®"1over input distribution u™ 1 So, on average g haserrorn %%t and IC~ [/n. =
The error tradeoffs of p vs. p’ is tight when (p, p’) = Alice Technical Challenges

(% + %% + “7) for some advantage a € [0,1]. When

the “cost” 1s information:

Bob - « Assumption (*) is not always true.

Fix: sample S from a more complicated distribution.

’ / 2 2 X S - - - .
* [BBCR’10] True for (p, p’) = (g;g) but not optimal Lemma: IC(x™) + IC(x(<™) = IC () + 0(1). - Conditioning induces arbitrary correlation between
, 2 1 _ : | .
+ False for (p,p’) = (-,- + 2 ") Lemma: There are RVs A,B,Z s.t. Z = AB and Inputs anc TESSages, thus, 75 is no longer a protocol
3 2 Fix: each conditioning event occurs w.h.p.— thus the

- / — 2 o ( ) — H ° — TK — TK . . . . -
* [This work] True for (p, p") = (1 —-n O'l»g) and adv(n'™) = E[A] + adv(n) = E[Z] = E[4B] correlation is small in expectation. Keep track of this

asymptotically optimal + adv(r'<V) = E[B] quantity and compensate it by an o,, (1) additive loss.
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