

k-Secretary

K-secretary [Kleinberg 2005]:

- *n* numbers arrives in random order
- Choose or reject once seeing an element, up to k elements
- Decisions are irrevocable

Goal: Maximize the sum of chosen numbers

Competitive Ratio (CR): An algorithm is α -competitive if $\mathbb{E}[\text{sum of chosen numbers}] \geq \alpha$

sum of *k* largest elements

on every instance.

Prior Work

Theorem	(Kleinberg	2005):	There	is	а	1 –	0
competitive	e algorithm.	(Optin	nal, i.e.	1 –	$-\Omega\left(\frac{1}{\sqrt{2}}\right)$	$\left(\frac{1}{\sqrt{k}}\right)$	C
unavoidabl	e.)						

1: Read the first $B \sim Bin(n, 1/2)$ elements. Run this algorithm recursively to solve a (k/2)-secretary instance on those elements

2: In parallel, list the k/2 largest elements among them, set the k/2-th largest as threshold

3: Accept the rest of the string if larger than the threshold

This Work: Memory-bounded Algorithms

We study k-secretary with bounded memory usage. Motivation:

- Large-scale learning and optimization tasks, e.g. routing
- Interest in learning & decision making in streaming setting with memory constraints
- Potential connections with computational complexity Kleinberg's algorithm requires $\Omega(k)$ space in step 2.

Optimal k-Secretary with Logarithmic Memory Wei Zhang Mingda Qiao Massachusetts Institute of Technology

Quantile Estimation

Quantile Estimation:

 X_1, \ldots, X_n are arbitrary and come in random order

Goal: Output the (approximately) k-th largest element

Error is defined as the difference between the rank and k: $\mathbb{E}[|rank(x) - k|]$

Main Algorithm for QE

(Let the string be $s_{1:n}$ in random order) QE(n, k, a): Seq length n, target rank k, threshold a (output the approximately k-th largest element among $\{s_1, s_2, \dots, s_n\} \cap (-\infty, a)$

- Step 0: - If $k \leq O(m)$, run the naive algorithm

- Step 1: - Draw $B \sim Bin(n, 1/2)$ and $B_1 \sim Bin(B, p)$ - Read the first B_1 elements, maintaining the top m elements (below *a*) in *M*[1], *M*[2], ..., *M*[*m*] - Read the first B elements, maintaining the rank of $M[1], M[2], \dots, M[m]$ among the B elements - Step 2: - Find *i* in [m] such that the rank of M[i] is k/2 - k' for

some k' in [1, k/100]- If fail, give up and output the largest element

- Otherwise, return QE(n - B, k', M[i])

 $\left(\frac{1}{\sqrt{k}}\right)$ CR is

Our Results

Proposition:

For all $\alpha \in [\frac{1}{2}, 1]$, quantile estimation with memory *m* and error $O(k^{\alpha})$ implies k-secretary with memory m + O(1) and CR 1 - $O(1/k^{1-\alpha})$.

Main Theorem:

- Error $O(\sqrt{k})$, with memory $O(\log k)$
- Exact selection, with memory $O(\sqrt{k})$
- Memory usage and error bounds are independent of n.

Corollary: Optimal *k*-secretary with $O(\log k)$ memory

Proof Sketch for O(sqrt(k)) Error

Main Idea: reducing Quantile Estimation (k) to Quantile Estimation (k/100)

Proof of $O(\sqrt{k})$ error:

If we could show the error for recursions decreases fast $E[error_k] \leq \sqrt{k} + 2E[error_{k/100}]$ Adding them: $E[error_k] \leq \sqrt{k} + 2\sqrt{k/100} + 4\sqrt{k/100^2} + \dots$ $= O(\sqrt{k})$

