
Soheil Behnezhad, Alma Ghafari
Northeastern University

Abstract

Our Contributions

Tools

Previous Work

Algorithm

We study the fully dynamic maximum matching problem.

The goal is to efficiently maintain an approximate maximum

matching of a graph that is subject to edge insertions and

deletions. We present an algorithms that maintain the edges

of a (1 − 𝜀)-approximate maximum matching for an arbitrarily

small constant 𝜀 > 0. The update time of our algorithm is

parametrized by the density of Ordered Ruzsa-Szemerédi

(ORS) graphs, a generalization of the Ruzsa-Szemerédi graphs.

While determining the density of ORS (or RS) remains a hard

problem in combinatorics, we prove that if the existing

constructions of ORS graphs are optimal, then our algorithm

runs in 𝑛0.5+𝜀 time for any fixed 𝜀 > 0 which would be

significantly faster than existing near-linear in 𝑛 time

algorithms.

Let 𝐺 = (𝑉, 𝐸) be an ORS graph with matchings 𝑀1, … ,𝑀𝑡.
• Insert graph 𝐺.
• For 𝑖 = 𝑡 to 1:

1. Connect the Complement nodes of 𝑀𝑖 to outside.
2. Delete the added edges.
3. Delete the edges of 𝑀𝑖.

Fully Dynamic Matching and Ordered Ruzsa-Szemerédi Graphs

Instead of each matching being an induced matching in the

whole graph, the edges of an ORS graph should be

decomposed into an ordered list of matchings such that each

matching is induced only with respect to the previous

matchings in the ordering. Every 𝑅𝑆𝑛(𝑟, 𝑡) graph is an

O𝑅𝑆𝑛(𝑟, 𝑡) graph but the reverse is not necessarily true.

Better Upper Bounds for ORS:

Let 0 < 𝑐 < 1/5 be a constant. Since O𝑅𝑆𝑛(𝑐𝑛) ≤ 𝑅𝑆𝑛(𝑐𝑛) as

every RS graph is also an ORS graph with the same

parameters, it is natural to first look into the more well-studied

case of RS graphs. Despite all the attention to RS graphs such

as in property testing and streaming algorithm, The value

of 𝑅𝑆𝑛(𝑐𝑛) remains widely unknown.

𝒏
Ω𝒄

1
log log 𝑛 = 𝑛𝑜 1 ≤ 𝑅𝑆𝑛(𝑐𝑛)

[Fische, Lehman, Newman, 

Raskhodnikova Rubinfeld, and 

Samorodnitsky 02]

𝑅𝑆𝑛(𝑐𝑛) ≤ 𝑛/ log
𝑂 𝑙𝑜𝑔

1
𝑐 𝑛

[Fox11]

Result 2:

For any 𝑐 > 0, it holds that O𝑅𝑆𝑛 𝑐𝑛 ≤ 𝑛/ log
Poly 1

𝑐 𝑛 .

• We can assume without loss of generality that maximum

matching size is Ω 𝑛 . Using this assumption we find the

matching once, do nothing for the next 𝜀𝑛 updates.

[AssadiKhannaLi 16] [Kiss 22]

• Finding (1 − 𝜀)-approximation on 𝐺 reduces to finding 𝑂(1)-

approximation on an adaptively chosen subgraph of 𝐺 .

[McGregor 05] [AhnGuha11] [AssadiLiuTarjan 21]

A Hard Example

We guarantee that if our algorithm takes Ω 𝑛2 time to solve

an instance 𝐺[𝑈], then the maximum matching in 𝐺[𝑈] must

be an induced matching of the graph 𝐺, and charge heavy

computations to ORS.

Problem 1: It might be that this matching is not induced

yet it is sparse enough that is hard to find.

A New Dynamic Matching Algorithm:

We present a new algorithm whose update time depends on

the density of Ordered Ruzsa Szemeredi (ORS) graphs, a

generalization of the well-known RuzsaSzemeredi (RS) graphs.

Open Problem:

Is it possible to maintain a (1 − 𝜀) -approximate maximum

matching in a fully dynamic graph, for any fixed ε > 0 , in

𝑛1−Ω(1)update time?

Definition:

An 𝑛-vertex graph 𝐺 = (𝑉, 𝐸) is an O𝑅𝑆𝑛(𝑟, 𝑡) graph if its edge-

set E can be decomposed into an ordered list of t edge-disjoint

matchings 𝑀1, … ,𝑀𝑡 each of size 𝑟 such that for every 𝑖 ∈ [𝑡],

matching 𝑀𝑖 is an induced matching in 𝑀1 ∪⋯∪𝑀𝑖. We use

O𝑅𝑆𝑛(𝑟) to denote the maximum t for which O𝑅𝑆𝑛(𝑟, 𝑡) graphs

exists.

Result 1:

Let ε > 0 be fixed. There is a randomized fully dynamic

algorithm that maintains the edges of a (1 − 𝜀)- approximate

maximum matching in ෩O 𝑛1+𝑜 1 ∙ O𝑅𝑆𝑛 𝑓 𝜀 ∙ 𝑛 amortized

update-time. The algorithm works against adaptive

adversaries.

In each step we are given a subgraph 𝑈.

Lemma:

Given 𝑈 with average degree 𝑑 there is an algorithm that

using random sampling takes O
𝑛2

𝑑
time to find an

approximate matching.

Problem 2: We need to ensure that the matchings that we

charge are edge-disjoint.

We maintain a set 𝑆 and add all edges of any matching that we

charge to this set.

Lemma:

Let 𝑀1, … ,𝑀𝑡 be the matchings that we charge and let 𝑑𝑖 be the

average degree of the i-th matching and suppose that these

matchings are edge-disjoint. We show in our update-time

analysis that σ𝑖=1
𝑡 1

𝑑𝑖
can be at most O𝑅𝑆𝑛 𝑓(𝜀) ∙ 𝑛 , and

therefore the total time spent by our algorithm can be upper

bounded by 𝑂 𝑛2O𝑅𝑆𝑛 𝑓(𝜀) ∙ 𝑛 .

Definition: An 𝑛-vertex graph 𝐺 = (𝑉, 𝐸) is an 𝑅𝑆𝑛(𝑟, 𝑡) graph if

its edge-set E can be decomposed into t edge-disjoint induced

matchings each of size r. We use 𝑅𝑆𝑛(𝑟) to denote the

maximum t for which 𝑅𝑆𝑛(𝑟, 𝑡) graphs exists.

We reset 𝑆 after෩O 𝑛 𝑛1+𝑜 1 ∙ O𝑅𝑆𝑛 𝑓 𝜀 ∙ 𝑛 updates to avoid

it being dense. Since we output a matching after 𝜀𝑛 updates,

the amortized running time is

𝑠

𝜀𝑛
+

𝑂 𝑛2O𝑅𝑆𝑛 𝑓 𝜀 ∙𝑛

𝑠
= ෩O 𝑛1+𝑜 1 ∙ O𝑅𝑆𝑛 𝑓 𝜀 ∙ 𝑛 .

Before solving 𝐺 𝑈 , we first go over the edges in 𝑆 and see

whether they can be used to find a large matching in 𝐺[𝑈].

• If they do, we do not run the random sampling algorithm

• If not, the matching that we find must be edge-disjoint.


